The knapsack problem is a well-known combinatorial optimization problem which has been proved to be NP-hard. This paper proposes a new algorithm called quantum-inspired ant algorithm (QAA) to solve the knapsack prob...The knapsack problem is a well-known combinatorial optimization problem which has been proved to be NP-hard. This paper proposes a new algorithm called quantum-inspired ant algorithm (QAA) to solve the knapsack problem. QAA takes the advantage of the principles in quantum computing, such as qubit, quantum gate, and quantum superposition of states, to get more probabilistic-based status with small colonies. By updating the pheromone in the ant algorithm and rotating the quantum gate, the algorithm can finally reach the optimal solution. The detailed steps to use QAA are presented, and by solving series of test cases of classical knapsack problems, the effectiveness and generality of the new algorithm are validated.展开更多
Certificateless public key cryptography is a new paradigm introduced by Al-Riyami and Paterson.It eliminates the need of the certificates in traditional public key cryptosystems and the key escrow problem in IDentity-...Certificateless public key cryptography is a new paradigm introduced by Al-Riyami and Paterson.It eliminates the need of the certificates in traditional public key cryptosystems and the key escrow problem in IDentity-based Public Key Cryptography(ID-PKC).Due to the advantages of the certificateless public key cryptography,a new efficient certificateless pairing-based signature scheme is presented,which has some advantages over previous constructions in computational cost.Based on this new signature scheme,a certificateless blind signature scheme is proposed.The security of our schemes is proven based on the hardness of computational Diffie-Hellman problem.展开更多
This paper continues discussing the problems of numerically solving the shallow water circulation on the basis of ref. 1, For the numerical method proposed in ref. 1, we applied a storage method with dense matrices, w...This paper continues discussing the problems of numerically solving the shallow water circulation on the basis of ref. 1, For the numerical method proposed in ref. 1, we applied a storage method with dense matrices, which abandoned usual bandwidth concept and attained the intention of saving interior storage, computing time and amount of preparing work before computing. The circulation considered the effect of small islands was successfully simulated by specially dealing with the bottom friction terms and the boundary conditions. In addition, we discussed the action of bottom friction on the dissipation of tidal energy and its effect on stability of period motion.展开更多
Based on the clonal selection theory and immune memory mechanism in the natural immune system, a novel artificial immune system algorithm, Clonal Strategy Algorithm based on the Immune Memory (CSAIM), is proposed in...Based on the clonal selection theory and immune memory mechanism in the natural immune system, a novel artificial immune system algorithm, Clonal Strategy Algorithm based on the Immune Memory (CSAIM), is proposed in this paper. The algorithm realizes the evolution of antibody population and the evolution of memory unit at the same time, and by using clonal selection operator, the global optimal computation can be combined with the local searching. According to antibody-antibody (Ab-Ab) affinity and antibody-antigen (Ab-Ag) affinity, the algorithm can allot adaptively the scales of memory unit and antibody population. It is proved theoretically that CSAIM is convergent with probability 1. And with the computer simulations of eight benchmark functions and one instance of traveling salesman problem (TSP), it is shown that CSAIM has strong abilities in having high convergence speed, enhancing the diversity of the population and avoiding the premature convergence to some extent.展开更多
We present an engineered version of the divide-and-conquer algorithm for finding the closest pair of points, within a given set of points in the XY-plane. For this version of the algorithm we show that only two pairwi...We present an engineered version of the divide-and-conquer algorithm for finding the closest pair of points, within a given set of points in the XY-plane. For this version of the algorithm we show that only two pairwise comparisons are required in the combine step, for each point that lies in the 25-wide vertical slab. The correctness of the algorithm is shown for all Minkowski distances with p ≥ 1. We also show empirically that, although the time complexity of the algorithm is still O(n lgn), the reduction in the total number of comparisons leads to a significant reduction in the total execution time, for inputs with size sufficiently large.展开更多
In current cloud computing system, large amounts of sensitive data are shared to other cloud users. To keep these data confidentiality, data owners should encrypt their data before outsourcing. We choose proxy reencry...In current cloud computing system, large amounts of sensitive data are shared to other cloud users. To keep these data confidentiality, data owners should encrypt their data before outsourcing. We choose proxy reencryption (PRE) as the cloud data encryption technique. In a PRE system, a semi-trusted proxy can transform a ciphertext under one public key into a ciphertext of the same message under another public key, but the proxy cannot gain any information about the message. In this paper, we propose a certificateless PRE (CL-PRE) scheme without pairings. The security of the proposed scheme can be proved to be equivalent to the computational Dire- Hellman (CDH) problem in the random oracle model. Compared with other existing CL-PRE schemes, our scheme requires less computation cost and is significantly more efficient. The new scheme does not need the public key certificates to guarantee validity of public keys and solves the key escrow problem in identity-based public key cryptography.展开更多
The cocktail party problem,i.e.,tracing and recognizing the speech of a specific speaker when multiple speakers talk simultaneously,is one of the critical problems yet to be solved to enable the wide application of au...The cocktail party problem,i.e.,tracing and recognizing the speech of a specific speaker when multiple speakers talk simultaneously,is one of the critical problems yet to be solved to enable the wide application of automatic speech recognition(ASR) systems.In this overview paper,we review the techniques proposed in the last two decades in attacking this problem.We focus our discussions on the speech separation problem given its central role in the cocktail party environment,and describe the conventional single-channel techniques such as computational auditory scene analysis(CASA),non-negative matrix factorization(NMF) and generative models,the conventional multi-channel techniques such as beamforming and multi-channel blind source separation,and the newly developed deep learning-based techniques,such as deep clustering(DPCL),the deep attractor network(DANet),and permutation invariant training(PIT).We also present techniques developed to improve ASR accuracy and speaker identification in the cocktail party environment.We argue effectively exploiting information in the microphone array,the acoustic training set,and the language itself using a more powerful model.Better optimization ob jective and techniques will be the approach to solving the cocktail party problem.展开更多
In this paper, based on the verifiable pair and identity-based threshold cryptography, a novel identity-based (ID-based) threshold decryption scheme (IDTDS) is proposed, which is provably secure against adaptive c...In this paper, based on the verifiable pair and identity-based threshold cryptography, a novel identity-based (ID-based) threshold decryption scheme (IDTDS) is proposed, which is provably secure against adaptive chosen cipbertext attack under the computational bilinear Diffie-Hellman (CBDH) problem assumption in the random oracle. The pubic cheekability of ciphertext in the IDTDS is given by simply creating a signed E1Gamal encryption instead of a noninteractive zero-knowledge proof. Furthermore, we introduce a modified verifiable pairing to ensure all decryption shares are consistent. Our scheme is more efficient in verification than the schemes considered previously.展开更多
Searchable public key encryption enables a storage server to retrieve the publicly encrypted data without revealing the original data contents.It offers a perfect cryptographic solution to encrypted data retrieval in ...Searchable public key encryption enables a storage server to retrieve the publicly encrypted data without revealing the original data contents.It offers a perfect cryptographic solution to encrypted data retrieval in encrypted data storage systems.Certificateless cryptography(CLC)is a novel cryptographic primitive that has many merits.It overcomes the key escrow problem in identity-based cryptosystems and the cumbersome certificate problem in conventional public key cryptosystems.Motivated by the appealing features of CLC,three certificateless encryption with keyword search(CLEKS)schemes were presented in the literature.However,all of them were constructed with the costly bilinear pairing and thus are not suitable for the devices that have limited computing resources and battery power.So,it is interesting and worthwhile to design a CLEKS scheme without using bilinear pairing.In this study,we put forward a pairing-free CLEKS scheme that does not exploit bilinear pairing.We strictly prove that the scheme achieves keyword ciphertext indistinguishability against adaptive chosen-keyword attacks under the complexity assumption of the computational Diffie-Hellman problem in the random oracle model.Efficiency comparison and the simulation show that it enjoys better performance than the previous pairing-based CLEKS schemes.In addition,we briefly introduce three extensions of the proposed CLEKS scheme.展开更多
基金supported by the National Natural Science Foundation of China(70871081)the Shanghai Leading Academic Discipline Project(S30504).
文摘The knapsack problem is a well-known combinatorial optimization problem which has been proved to be NP-hard. This paper proposes a new algorithm called quantum-inspired ant algorithm (QAA) to solve the knapsack problem. QAA takes the advantage of the principles in quantum computing, such as qubit, quantum gate, and quantum superposition of states, to get more probabilistic-based status with small colonies. By updating the pheromone in the ant algorithm and rotating the quantum gate, the algorithm can finally reach the optimal solution. The detailed steps to use QAA are presented, and by solving series of test cases of classical knapsack problems, the effectiveness and generality of the new algorithm are validated.
基金the National Natural Science Foundation of China (No.60673070)the Natural Science Foundation of Jiangsu Province (No.BK2006217)the Open Project of the Key Lab. on Computer Networks and Information Security (Xidian University) of Ministry of Education of China(No.20040105)
文摘Certificateless public key cryptography is a new paradigm introduced by Al-Riyami and Paterson.It eliminates the need of the certificates in traditional public key cryptosystems and the key escrow problem in IDentity-based Public Key Cryptography(ID-PKC).Due to the advantages of the certificateless public key cryptography,a new efficient certificateless pairing-based signature scheme is presented,which has some advantages over previous constructions in computational cost.Based on this new signature scheme,a certificateless blind signature scheme is proposed.The security of our schemes is proven based on the hardness of computational Diffie-Hellman problem.
文摘This paper continues discussing the problems of numerically solving the shallow water circulation on the basis of ref. 1, For the numerical method proposed in ref. 1, we applied a storage method with dense matrices, which abandoned usual bandwidth concept and attained the intention of saving interior storage, computing time and amount of preparing work before computing. The circulation considered the effect of small islands was successfully simulated by specially dealing with the bottom friction terms and the boundary conditions. In addition, we discussed the action of bottom friction on the dissipation of tidal energy and its effect on stability of period motion.
文摘Based on the clonal selection theory and immune memory mechanism in the natural immune system, a novel artificial immune system algorithm, Clonal Strategy Algorithm based on the Immune Memory (CSAIM), is proposed in this paper. The algorithm realizes the evolution of antibody population and the evolution of memory unit at the same time, and by using clonal selection operator, the global optimal computation can be combined with the local searching. According to antibody-antibody (Ab-Ab) affinity and antibody-antigen (Ab-Ag) affinity, the algorithm can allot adaptively the scales of memory unit and antibody population. It is proved theoretically that CSAIM is convergent with probability 1. And with the computer simulations of eight benchmark functions and one instance of traveling salesman problem (TSP), it is shown that CSAIM has strong abilities in having high convergence speed, enhancing the diversity of the population and avoiding the premature convergence to some extent.
文摘We present an engineered version of the divide-and-conquer algorithm for finding the closest pair of points, within a given set of points in the XY-plane. For this version of the algorithm we show that only two pairwise comparisons are required in the combine step, for each point that lies in the 25-wide vertical slab. The correctness of the algorithm is shown for all Minkowski distances with p ≥ 1. We also show empirically that, although the time complexity of the algorithm is still O(n lgn), the reduction in the total number of comparisons leads to a significant reduction in the total execution time, for inputs with size sufficiently large.
基金the National Natural Science Foundation of China(No.61133014)
文摘In current cloud computing system, large amounts of sensitive data are shared to other cloud users. To keep these data confidentiality, data owners should encrypt their data before outsourcing. We choose proxy reencryption (PRE) as the cloud data encryption technique. In a PRE system, a semi-trusted proxy can transform a ciphertext under one public key into a ciphertext of the same message under another public key, but the proxy cannot gain any information about the message. In this paper, we propose a certificateless PRE (CL-PRE) scheme without pairings. The security of the proposed scheme can be proved to be equivalent to the computational Dire- Hellman (CDH) problem in the random oracle model. Compared with other existing CL-PRE schemes, our scheme requires less computation cost and is significantly more efficient. The new scheme does not need the public key certificates to guarantee validity of public keys and solves the key escrow problem in identity-based public key cryptography.
基金supported by the Tencent and Shanghai Jiao Tong University Joint Project
文摘The cocktail party problem,i.e.,tracing and recognizing the speech of a specific speaker when multiple speakers talk simultaneously,is one of the critical problems yet to be solved to enable the wide application of automatic speech recognition(ASR) systems.In this overview paper,we review the techniques proposed in the last two decades in attacking this problem.We focus our discussions on the speech separation problem given its central role in the cocktail party environment,and describe the conventional single-channel techniques such as computational auditory scene analysis(CASA),non-negative matrix factorization(NMF) and generative models,the conventional multi-channel techniques such as beamforming and multi-channel blind source separation,and the newly developed deep learning-based techniques,such as deep clustering(DPCL),the deep attractor network(DANet),and permutation invariant training(PIT).We also present techniques developed to improve ASR accuracy and speaker identification in the cocktail party environment.We argue effectively exploiting information in the microphone array,the acoustic training set,and the language itself using a more powerful model.Better optimization ob jective and techniques will be the approach to solving the cocktail party problem.
基金Supported by the National Natural Science Foundation of China (60970119, 60803149)the National Basic Research Program of China (973 Program) (2007CB311201)
文摘In this paper, based on the verifiable pair and identity-based threshold cryptography, a novel identity-based (ID-based) threshold decryption scheme (IDTDS) is proposed, which is provably secure against adaptive chosen cipbertext attack under the computational bilinear Diffie-Hellman (CBDH) problem assumption in the random oracle. The pubic cheekability of ciphertext in the IDTDS is given by simply creating a signed E1Gamal encryption instead of a noninteractive zero-knowledge proof. Furthermore, we introduce a modified verifiable pairing to ensure all decryption shares are consistent. Our scheme is more efficient in verification than the schemes considered previously.
基金Project supported by the National Natural Science Foundation of China(Nos.61772009 and U1736112)the Fundamental Research Funds for the Central Universities,China(Nos.2016B10114 and 2017B17014)the Natural Science Foundation of Jiangsu Province,China(No.BK20181304)
文摘Searchable public key encryption enables a storage server to retrieve the publicly encrypted data without revealing the original data contents.It offers a perfect cryptographic solution to encrypted data retrieval in encrypted data storage systems.Certificateless cryptography(CLC)is a novel cryptographic primitive that has many merits.It overcomes the key escrow problem in identity-based cryptosystems and the cumbersome certificate problem in conventional public key cryptosystems.Motivated by the appealing features of CLC,three certificateless encryption with keyword search(CLEKS)schemes were presented in the literature.However,all of them were constructed with the costly bilinear pairing and thus are not suitable for the devices that have limited computing resources and battery power.So,it is interesting and worthwhile to design a CLEKS scheme without using bilinear pairing.In this study,we put forward a pairing-free CLEKS scheme that does not exploit bilinear pairing.We strictly prove that the scheme achieves keyword ciphertext indistinguishability against adaptive chosen-keyword attacks under the complexity assumption of the computational Diffie-Hellman problem in the random oracle model.Efficiency comparison and the simulation show that it enjoys better performance than the previous pairing-based CLEKS schemes.In addition,we briefly introduce three extensions of the proposed CLEKS scheme.