The conventional heat exchanger with segmental baffles is prone to bring forth fluid-induced vibration of heat transfer tubes and increase the pressure drop of shell-side greatly at higher fluid flow velocity. In orde...The conventional heat exchanger with segmental baffles is prone to bring forth fluid-induced vibration of heat transfer tubes and increase the pressure drop of shell-side greatly at higher fluid flow velocity. In order to avoid the above defects, the ROD-baffle heat exchanger has been developed. However, its collocation of heat transfer tubes is conventionally in square, which leads to fewer heat transfer area per unit volume. Based on the ROD-baffle heat exchanger, a new type curve-ROD baffle has been developed, and an industrial investigation of the curve-ROD baffle heat exchanger with normal triangular collocation has been carried into execution. In this paper, two equations using the Reynolds number were acquired to predict the heat transfer coefficients of the shell-side and tube-side. The experimental results show that the shell-side heat transfer and pressure drop characteristics of the curve-ROD baffle heat exchanger are superior to those of the segmental baffle one.展开更多
Laying head is a high-precision engineering device in hot-rolled high speed wire rod production line. Previously research works are focused on the laying pipe wear-resisting. Laying pipe curve design method based on w...Laying head is a high-precision engineering device in hot-rolled high speed wire rod production line. Previously research works are focused on the laying pipe wear-resisting. Laying pipe curve design method based on wire rod kinematics and dynamics analyses are not reported before. In order to design and manufacture the laying pipe, the motion and force process of the wire rod in the laying pipe should be studied. In this paper, a novel approach is proposed to investigate the force modeling for hot-rolled wire rod in laying pipe. An idea of limited element method is used to analysis and calculates the forces between laying pipe inner surface and wire rod. The design requirements of laying pipe curve for manufacturing are discussed. The kinematics and dynamics modeling for numerical calculation are built. A laying pipe curve equation is proposed by discussing design boundary conditions. Numerical results with di erent laying pipe curves design parameters are plotted and compared. The proposed approach performs good result which can be applied for laying pipe curve design and analysis for engineering application.展开更多
Formulae for determining Green strain of an initially curved and twisted rod with circular cross-sections are derived by using the natural (curvilinear) coordinate system. Finite element analyses are performed for the...Formulae for determining Green strain of an initially curved and twisted rod with circular cross-sections are derived by using the natural (curvilinear) coordinate system. Finite element analyses are performed for the flexural buckling of initially curved and twisted thin rods under simultaneous action of axial force and torque. Numerical examples demonstrate that the given formulae are correcte. Some numerical results are compared with existing analytical solutions and data obtained by commercial FE software. The convergence of the proposed curved element is better than that of elements in the commercial FE software. It is shown that good accuracy and convergency are achieved by solving three-dimensional problems.展开更多
文摘The conventional heat exchanger with segmental baffles is prone to bring forth fluid-induced vibration of heat transfer tubes and increase the pressure drop of shell-side greatly at higher fluid flow velocity. In order to avoid the above defects, the ROD-baffle heat exchanger has been developed. However, its collocation of heat transfer tubes is conventionally in square, which leads to fewer heat transfer area per unit volume. Based on the ROD-baffle heat exchanger, a new type curve-ROD baffle has been developed, and an industrial investigation of the curve-ROD baffle heat exchanger with normal triangular collocation has been carried into execution. In this paper, two equations using the Reynolds number were acquired to predict the heat transfer coefficients of the shell-side and tube-side. The experimental results show that the shell-side heat transfer and pressure drop characteristics of the curve-ROD baffle heat exchanger are superior to those of the segmental baffle one.
基金China Postdoctoral Science Foundation Project(Grant No.2017M611184)
文摘Laying head is a high-precision engineering device in hot-rolled high speed wire rod production line. Previously research works are focused on the laying pipe wear-resisting. Laying pipe curve design method based on wire rod kinematics and dynamics analyses are not reported before. In order to design and manufacture the laying pipe, the motion and force process of the wire rod in the laying pipe should be studied. In this paper, a novel approach is proposed to investigate the force modeling for hot-rolled wire rod in laying pipe. An idea of limited element method is used to analysis and calculates the forces between laying pipe inner surface and wire rod. The design requirements of laying pipe curve for manufacturing are discussed. The kinematics and dynamics modeling for numerical calculation are built. A laying pipe curve equation is proposed by discussing design boundary conditions. Numerical results with di erent laying pipe curves design parameters are plotted and compared. The proposed approach performs good result which can be applied for laying pipe curve design and analysis for engineering application.
文摘Formulae for determining Green strain of an initially curved and twisted rod with circular cross-sections are derived by using the natural (curvilinear) coordinate system. Finite element analyses are performed for the flexural buckling of initially curved and twisted thin rods under simultaneous action of axial force and torque. Numerical examples demonstrate that the given formulae are correcte. Some numerical results are compared with existing analytical solutions and data obtained by commercial FE software. The convergence of the proposed curved element is better than that of elements in the commercial FE software. It is shown that good accuracy and convergency are achieved by solving three-dimensional problems.