In this paper,we consider the double-satellite localization under the earth ellipsoid model of the Wideband Geodetic System(WGS-84)using the Time Difference of Arrival(TDOA)and the Angle-of-Arrival(AOA).Several closed...In this paper,we consider the double-satellite localization under the earth ellipsoid model of the Wideband Geodetic System(WGS-84)using the Time Difference of Arrival(TDOA)and the Angle-of-Arrival(AOA).Several closed-form solution algorithms via the pseudolinearization of the measurement equations are presented to efficiently estimate the location.These algorithms include the Weighted Least Squares(WLS),the Constrained Total Least Squares(CTLS),and the Taylor-Series Iteration(TSI).Performance comparison of the proposed methods with the Cramér-Rao Lower Bound(CRLB)in the simulation is shown to demonstrate that the proposed algorithms are feasible and have stable performance.展开更多
基金supported by Meteorological information and Signal Processing Key Laboratory of Sichuan Higher Education Institutes of Chengdu University of Information Technology,China(No.QXXCSYS201702)
文摘In this paper,we consider the double-satellite localization under the earth ellipsoid model of the Wideband Geodetic System(WGS-84)using the Time Difference of Arrival(TDOA)and the Angle-of-Arrival(AOA).Several closed-form solution algorithms via the pseudolinearization of the measurement equations are presented to efficiently estimate the location.These algorithms include the Weighted Least Squares(WLS),the Constrained Total Least Squares(CTLS),and the Taylor-Series Iteration(TSI).Performance comparison of the proposed methods with the Cramér-Rao Lower Bound(CRLB)in the simulation is shown to demonstrate that the proposed algorithms are feasible and have stable performance.