For a chlorinating method at low temperature, the possibility of chlorination of Nd2O3 by a mechanochemical reaction with CCl4 was studied using a planetary ball mill. The mechanochemical experiments were conducted by...For a chlorinating method at low temperature, the possibility of chlorination of Nd2O3 by a mechanochemical reaction with CCl4 was studied using a planetary ball mill. The mechanochemical experiments were conducted by changing the pot materials, milling time, molar ratio of CCl4/Nd2O3, and revolution speed. As the results of obtained products by X-ray diffractometry and Raman spectroscopy, it was confirmed that the chlorination to NdOCl from Nd2O3 with CCl4 was advanced at room temperature in a zirconia or tungsten pot with balls. We found that an extension of the milling time and an increase of the number of ball were effective to the chlorination to NdOCl and that tensile stress remained in the milled powder by using a planetary ball mill.展开更多
文摘For a chlorinating method at low temperature, the possibility of chlorination of Nd2O3 by a mechanochemical reaction with CCl4 was studied using a planetary ball mill. The mechanochemical experiments were conducted by changing the pot materials, milling time, molar ratio of CCl4/Nd2O3, and revolution speed. As the results of obtained products by X-ray diffractometry and Raman spectroscopy, it was confirmed that the chlorination to NdOCl from Nd2O3 with CCl4 was advanced at room temperature in a zirconia or tungsten pot with balls. We found that an extension of the milling time and an increase of the number of ball were effective to the chlorination to NdOCl and that tensile stress remained in the milled powder by using a planetary ball mill.