Conservation Agriculture(CA)covers more than 205 million hectares in the world.This made it possible to face and mitigate the challenges of climate change,reducing soil erosion and providing multiple ecosystem service...Conservation Agriculture(CA)covers more than 205 million hectares in the world.This made it possible to face and mitigate the challenges of climate change,reducing soil erosion and providing multiple ecosystem services.The first elementary factor influenced is the yield evaluation.It has a direct effect on farmers’choices for sustainable production.The present article records a review focused on wheat yield average positive change compared between conventional tillage(CT)and no tillage(NT)systems.The international database collected showed that NT is adaptable everywhere.The results of wheat yield differentiation showed the influence of crop rotation depending on stations located in different climatic zones.In more than 40 years of research,specialists have succeeded in demonstrating the importance of crop productivity like wheat.The whole integrates also experimentations where the initiation starts more than ten years.展开更多
Biaxia lrotary tillage in dryland(DBRT)can complete biaxial rotary tillage with straw incorporation,secondary suppression,and ditching,and it has been previously studied in direct-seeded rice and wheat.However,the eff...Biaxia lrotary tillage in dryland(DBRT)can complete biaxial rotary tillage with straw incorporation,secondary suppression,and ditching,and it has been previously studied in direct-seeded rice and wheat.However,the effects of DBRT on the mechanically transplanted rice yield and greenhouse gas emissions remain unclear.To evaluate the effects of DBRT on improving the food security of mechanically transplanted rice and reducing the greenhouse gas emissions,we conducted an experiment for two years with wheat straw incorporation.Three tillage methods were set up:DBRT,uniaxial rotary tillage in dryland and paddy(DPURT),and uniaxial rotary tillage in paddy(PURT).The results showed that compared with DPURT and PURT,DBRT increased the yield of machine-transplanted rice by 7.5-11.0%and 13.3-26.7%,respectively,while the seasonal cumulative CH_(4) emissions were reduced by 13.9-21.2%and 30.2-37.0%,respectively,and the seasonal cumulative N_(2)O emissions were increased by 13.5-28.6%and 50.0-73.1%,respectively.Consequently,DBRT reduced the global warming potential by 10.7-15.5%and 23.7-28.6%,respectively,andtheyield-scaledglobalwarmingpotentialby18.2-21.8%and36.4-39.3%,respectively,compared to DPURT and PURT.These results were mainly related to the fact that DBRT significantly reduced soil bulk density and increased soil redox potential(Eh).Therefore,implementing DBRT in machine-transplanted rice fields is feasible,which cannot only increase the rice yield,but also reduce the greenhouse gas emissions.展开更多
Tillage practices during the fallow period benefit water storage and yield in dryland wheat crops.However,there is currently no clarity on the responses of soil organic carbon(SOC),total nitrogen(TN),and available nut...Tillage practices during the fallow period benefit water storage and yield in dryland wheat crops.However,there is currently no clarity on the responses of soil organic carbon(SOC),total nitrogen(TN),and available nutrients to tillage practices within the growing season.This study evaluated the effects of three tillage practices(NT,no tillage;SS,subsoil tillage;DT,deep tillage)over five years on soil physicochemical properties.Soil samples at harvest stage from the fifth year were analyzed to determine the soil aggregate and aggregate-associated C and N fractions.The results indicated that SS and DT improved grain yield,straw biomass and straw carbon return of wheat compared with NT.In contrast to DT and NT,SS favored SOC and TN concentrations and stocks by increasing the soil organic carbon sequestration rate(SOCSR)and soil nitrogen sequestration rate(TNSR)in the 0-40 cm layer.Higher SOC levels under SS and NT were associated with greater aggregate-associated C fractions,while TN was positively associated with soluble organic nitrogen(SON).Compared with DT,the NT and SS treatments improved soil available nutrients in the 0-20 cm layer.These findings suggest that SS is an excellent practice for increasing soil carbon,nitrogen and nutrient availability in dryland wheat fields in North China.展开更多
Perennial grass-legume mixtures have been extensively used to restore degraded grasslands,increasing grassland productivity and forage quality.Tillage is crucial for seedbed preparation and sustainable weed management...Perennial grass-legume mixtures have been extensively used to restore degraded grasslands,increasing grassland productivity and forage quality.Tillage is crucial for seedbed preparation and sustainable weed management for the establishment of grass-legume mixtures.However,a common concern is that intensive tillage may alter soil characteristics,leading to losses in soil organic carbon(SOC).We investigated the plant community composition,SOC,soil microbial biomass carbon(MBC),soil enzyme activities,and soil properties in long-term perennial grass-legume mixtures under two different tillage intensities(once and twice)as well as in a fenced grassland(FG).The establishment of grass-legume mixtures increased plant species diversity and plant community coverage,compared with FG.Compared with once tilled grassland(OTG),twice tilled grassland(TTG)enhanced the coverage of high-quality leguminous forage species by 380.3%.Grass-legume mixtures with historical tillage decreased SOC and dissolved organic carbon(DOC)concentrations,whereas soil MBC concentrations in OTG and TTG increased by 16.0%and 16.4%,respectively,compared with FG.TTG significantly decreased the activity of N-acetyl-β-D-glucosaminidase(NAG)by 72.3%,whereas soil enzymeβ-glucosidase(βG)in OTG and TTG increased by 55.9%and 27.3%,respectively,compared with FG.Correlation analysis indicated a close association of the increase in MBC andβG activities with the rapid decline in SOC.This result suggested that MBC was a key driving factor in soil carbon storage dynamics,potentially accelerating soil carbon cycling and facilitating biogeochemical cycling.The establishment of grass-legume mixtures effectively improves forage quality and boosts plant diversity,thereby facilitating the restoration of degraded grasslands.Although tillage assists in establishing legume-grass mixtures by controlling weeds,it accelerates microbial activity and organic carbon decomposition.Our findings provide a foundation for understanding the process and effectiveness of restoration management in degraded grasslands.展开更多
Construction activities often involve removal of topsoil and compaction of the exposed soil by heavy equipments. Such compacted soils with low organic matter can lead to low infiltration and poor vegetation establishm...Construction activities often involve removal of topsoil and compaction of the exposed soil by heavy equipments. Such compacted soils with low organic matter can lead to low infiltration and poor vegetation establishment. The objective of this study was to investigate the efficacy of tillage (shallow till) and compost on soil physical and biological properties in a hydroseeded lawn as a post-construction best management practice for soil compaction remediation. The experimental site received a total of four land treatments in five replicated trials and it was hydroseeded with common Bermuda grass: 1) No Tillage + Compost (NT-C), 2) No Tillage + No Compost (NT-NC;control), 3) Tillage + Compost (T-C), and 4) Tillage + No Compost (T-NC). Bulk density (BD), infiltration rate (IR), and wet aggregate stability (WAS) in each plot were measured to assess soil physical properties while soil organic matter (SOM) and enzyme activity (β-glucosidase, acid-phosphatase, and alkaline-phosphatase) were measured for soil biological properties. Over a 15-months of monitoring period, the shallow tillage loosened the soil initially, but its effect on BD without compost was diminished to control plot level (NT-NC) within 4 months after hydroseeding. Both tillage and compost led to an increase in IR, and it remained higher than control by 2 - 3 times throughout the observation period. The WAS and β-glucosidase activity decreased in tilled plot unless there was compost application. Turfgrass showed greener leaves and aggregated roots in the compost-amended plots (NT-C and T-C). Our results suggest that compost application plays a key role in improving soil physical and biological properties in hydroseeded lawns from construction sites.展开更多
Plastic film mulch systems are used widely in arid areas, and the associated tillage measures affect soil properties, root and crop growth, and nutrient uptake. However, much debate surrounds the most suitable tillage...Plastic film mulch systems are used widely in arid areas, and the associated tillage measures affect soil properties, root and crop growth, and nutrient uptake. However, much debate surrounds the most suitable tillage method for plastic film mulch systems. We conducted a two-year field experiment to explore the impact of three tillage treatments-rotary tillage before ridge–furrow plastic film mulch(MR), no-tillage before ridge–furrow plastic film mulch(MZ), and plow tillage before ridge–furrow plastic film mulch(MP)-on soil total nitrogen, available nitrogen, root stratification structure,nitrogen transfer and utilization, and maize yield. The results showed that MP had better soil quality than either MR or MZ over 2019 and 2020, with higher nitrate-nitrogen and total nitrogen in the 0–40 cm soil layer. MP improved the soil physicochemical properties more than the other treatments, producing significantly higher root numbers and root biomass for the aerial and underground nodal roots than MR and MZ. At harvest, MP had the highest root biomass density,root length density, and root surface area density in the different soil layers(0–20, 20–40, and 0–40 cm). Significant correlations occurred between root biomass and aboveground nitrogen accumulation during maize growth. During grain filling, MP had the greatest nitrogen transfer amount, significantly increasing root and aboveground nitrogen transfer by 19.63–45.82% and 11.15–24.56%, respectively, relative to the other treatments. MP significantly produced 1.36–26.73%higher grain yields and a higher grain crude protein content at harvest than MR and MZ. MP also had higher values for the nitrogen harvest index, nitrogen uptake efficiency, and partial factor productivity of nitrogen fertilizer than MR and MZ.In conclusion, plow tillage combined with a ridge–furrow plastic film mulch system facilitated maize root development and improved nitrogen utilization, thereby increasing maize yield more than the other treatments.展开更多
Straw is widely incorporated into soil worldwide,but most studies have concentrated on the effects of straw mulching or incorporation with topsoil.To determine the effect of depth of straw incorporation on bacterial a...Straw is widely incorporated into soil worldwide,but most studies have concentrated on the effects of straw mulching or incorporation with topsoil.To determine the effect of depth of straw incorporation on bacterial and fungal communities,we established a field experiment in a region in Northeast China with Haplic Chernozems using four treatments:conventional tillage(CT,tillage to a depth of 15 cm with no straw incorporation),straw incorporation with conventional tillage(SCT,tillage to a depth of 15 cm),inversion tillage(IT,tillage to a depth of 35 cm)and straw incorporation with inversion tillage(SIT,tillage to a depth of 35 cm).The soils were managed by inversion to a depth of 15 or 35 cm after harvest.The results show that soil organic carbon content was significantly higher and pH and bulk density were significantly lower in the 15–35 cm layer in IT and SIT than CT and SCT.Fungal abundance was higher with straw incorporation,but fungal diversity was lower in the 0–15 cm layer in SCT and SIT than in CT and IT.Path length in the bacterial network was shorter and connectivity was higher in CT+SCT than in IT+SIT,leading to a more complex ecosystem,and the fungal network had opposite patterns.The key taxa in the phylum Actinobacteriota and Ascomycota in the microbial networks changed dramatically at the genus level following inversion tillage with straw amendment,which may increase bacterial network resistance to environmental disturbances and unstable fungal networks,resulting in large changes in the fungal community involved in the decomposition of recalcitrant straw-derived C and the more efficient acquisition of limiting resources.展开更多
Short Retraction Notice The paper does not meet the standards of "Advances in Bioscience and Biotechnology". This article has been retracted to straighten the academic record. In making this decision the Edi...Short Retraction Notice The paper does not meet the standards of "Advances in Bioscience and Biotechnology". This article has been retracted to straighten the academic record. In making this decision the Editorial Board follows COPE's Retraction Guidelines. The aim is to promote the circulation of scientific research by offering an ideal research publication platform with due consideration of internationally accepted standards on publication ethics. The Editorial Board would like to extend its sincere apologies for any inconvenience this retraction may have caused. Editor guiding this retraction: Prof. Abass Alavi (EiC of ABB). Please see the article page for more details. The full retraction notice in PDF is preceding the original paper which is marked "RETRACTED".展开更多
The implementation of appropriate tillage practices is of great significance for agricultural production. However, the effects of different tillage depths on soil nutrients content and microbial communities in tobacco...The implementation of appropriate tillage practices is of great significance for agricultural production. However, the effects of different tillage depths on soil nutrients content and microbial communities in tobacco-planting soils are still lacking systematic research. In this study, three different tillage depths of 15 cm (T1), 20 cm (T2), and 30 cm (T3) were set up for field experiments in Liupanshui, Guizhou Province, to explore the effects of tillage depth on tobacco-planting soil nutrients and bacterial and fungal communities based on 16S rRNA and ITS sequencing and figure out the key factors affecting soil microbial communities. The results showed that T2 and T3 increased the contents of organic matter, total nitrogen, total phosphorus, available phosphorus, and available potassium in tobacco-planting soil, and increased the diversity of bacterial communities compared with T1. There was no significant difference in the structure of bacterial and fungal communities in different tillage depth treatments, but some dominant genera were significantly enriched in T2 and T3. Desulfobacter, Setophoma, Humicola, and Acremonium were significantly enriched in T2. Chthonomonas and Fusarium were significantly enriched in T3. These genera favor the decomposition of organic matter and the cycling of nutrients, and control soil pests and diseases. Redundancy analysis indicated that TP and AK were the key factors influencing the dominant genera of bacteria and fungi. This study provides a scientific basis for the selection of soil tillage depth for tobacco production in this region.展开更多
This paper reports"the fourth set"of drilling tillage after"ploughing(hoeing)"by manpower,animal power and tractor——Fenlong tillage technology(referred to as"Fenlong technology").It mak...This paper reports"the fourth set"of drilling tillage after"ploughing(hoeing)"by manpower,animal power and tractor——Fenlong tillage technology(referred to as"Fenlong technology").It makes the cultivated land and saline alkali land transformed into"sponge"farmland through"drill bit"vertically digging into the soil,one-time deep cultivation,not disturbing soil layer,and granulating the soil,to bring about the effects of"expanding the land,releasing the natural force,water conservation,disaster reduction,carbon reduction,tillage saving,fertilizer saving and grain increasing",and can broaden the space for human survival and development.It has been applied to more than 50 crops in 28 provinces,including Guangxi,Hebei and Tibet.Without increasing the use of fertilizer and water,the yield of varieties in cultivated land increased by 10%-50%,while that in saline and alkaline land increased by 20%-100%.The storage of natural precipitation increased by 100%,and drought,high temperature and low temperature decreased by 20%-30%,and carbon sequestration and emission reduction reached 20%.It is proposed that China can implement the"dual strategy"platform of farmland,saline alkali land,rivers and water bodies constructing the"incremental""five new warehouses"of grain,water,fish,sugar,etc.and"increased grain return"abroad,to ensure national security.展开更多
[Objective] The effects of different tillage techniques on dry matter accu- mulation, soil water content, water use efficiency and yield of broomcom millet were studied. [Method] With Jinsu 9 as an experiment material...[Objective] The effects of different tillage techniques on dry matter accu- mulation, soil water content, water use efficiency and yield of broomcom millet were studied. [Method] With Jinsu 9 as an experiment material, the effects of deep tillage, traditional tillage and no tillage and rotary tillage on dry matter accumulation, soil water content, water use efficiency and yield of broomcom millet were investi- gated. [Result] Dry matter accumulation rate and accumulated amount were signifi- cantly higher in the deep tillage, no tillage and rotary tillage treatments than in the conventional tillage treatment, and the highest in the deep tillage treatment. The soil water content of the deep tillage treatment at 0-100 cm was higher than those of other tillage techniques, deep tillage also exhibited the highest soil water storage, and water use efficiency values were in order of deep tillage〉rotary tillage〉no tillage〉conventional tillage. The deep tillage treatment also showed the highest grain weight per spike, 1 000-grain weight and yield, while conventional tillage exhibited the lowest values, indicating that deep tillage is most beneficial to improvement of yield and water use efficiency of broomcom millet. [Conclusion] This study provides a scientific basis for water use efficiency of broomcorh millet in its main producing areas.展开更多
[Objective] The aim of the research was to find the optimal nitrogen application rate, density and seedling age for no-tillage rape in seedling stage. [Method] With the D-optimal quadratic regression design for three ...[Objective] The aim of the research was to find the optimal nitrogen application rate, density and seedling age for no-tillage rape in seedling stage. [Method] With the D-optimal quadratic regression design for three factors, the 310 scheme was designed to study the effects of nitrogen application rate, density and seedling age on dry matter accumulation of no-tillage rape in seedling stage. [Result] With the increase of nitrogen application rate, density and seedling age, the dry matter content appeared like a parabola, increasing firstly and then declining. The change of nitrogen application rate caused greater influence than that of density and seedling age; the interaction effects between nitrogen application rate and density were greater than that between nitrogen application rate and seedling age as well as between density and seedling age. [Conclusion] Considered comprehensively, the dry matter content of no-tillage rape in seedling stage reached the highest level (4 768.2 kg/hm2) when the nitrogen application rate, the density and the seedling age were 195 kg/hm2, 93 000 plants/hm2 and 33 d, respectively.展开更多
Based on three years of long-term fixed-site field trial, the effects of differ- ent tillage and mulching modes on the yield and output value of tobacco and soil quality were investigated. The results showed that the ...Based on three years of long-term fixed-site field trial, the effects of differ- ent tillage and mulching modes on the yield and output value of tobacco and soil quality were investigated. The results showed that the yield and output value of to- bacco in tillage treatment were improved by 22.72 % and 37.23 % compared with non-tillage treatment, respectively; the yield and output value of tobacco in rotation treatment were improved by 1.83% and 19.41% compared with continuous cropping treatment, respectively; the yield and output value of tobacco in straw mulching treatment were improved by 3.55% and 2.4% compared with non-straw mulching treatment, respectively, which indicated that tillage, rotation and straw mulching could improve the yield and output value of tobacco to a certain extent; especially, the yield and output value of tobacco increased significantly after plowing under rotation conditions. The contents of available phosphorus (AP), alkali-hydrolyzable nitrogen (AN), organic matter (OM), total nitrogen (TN) and total phosphorus (TP) in non- tillage treatment were 35.14%, 9.92%, 9.57%, 4.40% and 34.16% higher compared with tillage treatment; especially, under non-tillage conditions, soil pH and contents of available potassium (AK), AP, AN,OM,TN,TP and total potassium (TK) in continu- ous cropping field were 2.01%, 48.68%, 73.09%, 11.45%, 7.71%, 7.31%, 47.68% and 11.78% higher compared with rotation field, indicating that non-tillage treatment and continuous cropping could improve the total content and available content of organic matter, nitrogen and phosphorus. Therefore, from the perspective of soil fer- tility improvement and sustainable tobacco production, continuous cropping under non-tillage conditions might be the most appropriate cropping pattern for local soil fertility improvement; aiming at improving the yield and output value of tobacco, green manure-tobacco→, green manure/wheat/maize→green manure-tobacco ro- tation might be the most appropriate cropping pattern.展开更多
Two-line super hybrid rice (Oryza sativa L.) Guiliangyou 2 was taken as the experimental variety, the growth and physiological characteristics of rice under conventional tillage and smashing ridge tillage were compa...Two-line super hybrid rice (Oryza sativa L.) Guiliangyou 2 was taken as the experimental variety, the growth and physiological characteristics of rice under conventional tillage and smashing ridge tillage were compared based on field re- search. The results showed that smashing ridge tillage was beneficial to the tillering growth of rice plants in the the middle and later periods of tillering; under the tillage mode, the white root was more, the vigour was strong during the whole growing period, the SPAD was extremely significantly higher than that of conventional tillage, the net photosynthetic rate of the leaves was high and held green long, which were beneficial to the production and accumulation of photoassimilates; during mature pe- riod, the dry matter accumulation of the overground part under smashing ridge tillage was significantly higher than that of conventional tillage, and the number of productive ears under smashing ridge tillage was more than that of conventional tillage by 27.6×10^4/hm2, thus, the yield-increasing effect was significant and in- creased by 20.36%.展开更多
Ridge tillage, which is a very common and important tillage measure in the black soil area of northeast China, has some soil and water conservation bene- fits, but has little attention. It is very important to explore...Ridge tillage, which is a very common and important tillage measure in the black soil area of northeast China, has some soil and water conservation bene- fits, but has little attention. It is very important to explore the spatial distribution of the ridge direction of the arable land and its soil and water conservation benefits in different terrain conditions in the black soil area. So Binxian County of Heilongjiang Province was selected as the study area, and 168 field investigation units were ex- tracted by stratified sampling method and investigated. According to equations of slope gradient factor and slope gradient in ridge direction, and based on the soft- ware of Arcmap, SPSS and Excel, the investigation data of soil and water loss in Binxian County were analyzed and counted, The results show that in plain, hilly and mountainous areas, the average ground slope gradients are 1.92°, 6.20° and 8.27° respectively, and the average slope gradients along ridge direction are 1.33°, 4.52°and 6.45° respectively, which account for about 70%, 73% and 78% of the average ground slope gradients in the same terrain condition; the relative quantities of soil erosion in the present ridge tillage condition account for about 55%, 69% and 67% respectively of that in down-slope ridge tillage conditions, so the present ridge tillage has obviously relative soil and water conservation benefits. Based on these results, the reasons of the present ridge tillage status were analyzed, and some reform measures were proposed. The results could not only help to comprehend the spatial distribution and soil and water conservation benefits of ridge tillage in the black soil area of Northeast China, but also provide scientific references for the layout of local soil and water conservation measures.展开更多
A four-year field experiment was conducted to investigate the effect of subsoiling depth on root morphology, nitrogen(N), phosphorus(P), and potassium(K) uptake, and grain yield of spring maize. The results indicated ...A four-year field experiment was conducted to investigate the effect of subsoiling depth on root morphology, nitrogen(N), phosphorus(P), and potassium(K) uptake, and grain yield of spring maize. The results indicated that subsoil tillage promoted root development,increased nutrient accumulation, and increased yield. Compared with conventional soil management(CK), root length, root surface area, and root dry weight at 0–80 cm soil depth under subsoil tillage to 30 cm(T1) and subsoil tillage to 50 cm(T2) were significantly increased, especially the proportions of roots in deeper soil. Root length, surface area, and dry weight differed significantly among three treatments in the order of T2 > T1 > CK at the12-leaf and early filling stages. The range of variation of root diameter in different soil layers in T2 treatment was the smallest, suggesting that roots were more likely to grow downwards with deeper subsoil tillage in soil. The accumulation of N, P, and K in subsoil tillage treatment was significantly increased, but the proportions of kernel and straw were different. In a comparison of T1 with T2, the grain accumulated more N and P, while K accumulation in kernel and straw varied in different years. Grain yield and biomass were increased by 12.8% and 14.6% on average in subsoil tillage treatments compared to conventional soil treatment. Although no significant differences between different subsoil tillage depths were observed for nutrient accumulation and grain yield, lodging resistance of plants was significantly improved in subsoil tillage to 50 cm, a characteristic that favors a high and stable yield under extreme environments.展开更多
Straw return is an important management tool for tackling and promoting soil nutrient conservation and improving crop yield in Huang-Huai-Hai Plain, China. Although the incorporation of maize straw with deep plowing a...Straw return is an important management tool for tackling and promoting soil nutrient conservation and improving crop yield in Huang-Huai-Hai Plain, China. Although the incorporation of maize straw with deep plowing and rotary tillage practices are widespread in the region, only few studies have focused on rotation tillage. To determine the effects of maize straw return on the nitrogen (N) efficiency and grain yield of winter wheat (Triticum aestivum L.), we conducted experiments in this region for 3 years. Five treatments were tested: (i) rotary tillage without straw return (RT); (ii) deep plowing tillage without straw return (DT); (iii) rotary tillage with total straw return (RS); (iv) deep plowing tillage with total straw return (DS); (v) rotary tillage of 2 years and deep plowing tillage in the 3rd year with total straw return (TS). Treatments with straw return increased kernels no. ear-1, thousand-kernel weight (TKW), grain yields, ratio of dry matter accumulation post-anthesis, and nitrogen (N) efficiency whereas reduced the ears no. ha-1 in the 2011-2012 and 2012-2013 growing seasons. Compared with the rotary tillage, deep plowing tillage significantly increased the grain yield, yield components, total dry matter accumulation, and N efficiency in 2013-2014. RS had significantly higher straw N distribution, soil inorganic nitrogen content, and soil enzymes activities in the 0-10 cm soil layer compared with the DS and TS. However, significantly lower values were ob- served in the 10-20 and 20-30 cm soil layers. TS obtained approximately equal grain yield as DS, and it also reduced the resource costs. Therefore, we conclude that TS is the most economical method for increasing grain yield and N efficiency of winter wheat in Huang-Huai-Hai Plain.展开更多
The standard cultivation system in the North China Plain is double cropping of winter wheat and summer maize. The main effects of this cultivation system on root development and yield are decreases in soil nutrient co...The standard cultivation system in the North China Plain is double cropping of winter wheat and summer maize. The main effects of this cultivation system on root development and yield are decreases in soil nutrient content and depth of the plow layer under either long-term no-tillage or rotary tillage before winter wheat sowing and no tillage before summer maize sowing. In this study, we investigated the combined effects of tillage practices before winter wheat and summer maize sowing on soil properties and root growth and distribution in summer maize. Zhengdan 958(ZD958) was used as experimental material, with three tillage treatments: rotary tillage before winter wheat sowing and no tillage before summer maize sowing(RTW + NTM), moldboard plowing before winter wheat sowing and no tillage before summer maize sowing(MPW + NTM), and moldboard plowing before winter wheat sowing and rotary tillage before summer maize sowing(MPW + RTM).Tillage practice showed a significant(P < 0.05) effect on grain yield of summer maize. Grain yields under MPW + RTM and MPW + NTM were 30.6% and 24.0% higher, respectively, than that under RTW + NTM. Soil bulk density and soil penetration resistance decreased among tillage systems in the order RTW + NTM > MPW + NTM > MPW + RTM. Soil bulk densities were 3.3% and 515% lower in MPW + NTM and MPW + RTM, respectively, than that in RTW + NTM, and soil penetration resistances were respectively 17.8% and 20.4% lower,across growth stages and soil depths. Root dry matter and root length density were highest under MPW + RTM, with the resulting increased root activity leading to a yield increase of summer maize. Thus the marked effects of moldboard plowing before winter-wheat sowing on root length density, soil penetration resistance, and soil bulk density may contribute to higher yield.展开更多
Tillage greatly influences the aggregation and stability of soil aggregates. This study investigated the effects of conservation tillage on soil aggregate characteristics. During a four-year study period (2001-2005)...Tillage greatly influences the aggregation and stability of soil aggregates. This study investigated the effects of conservation tillage on soil aggregate characteristics. During a four-year study period (2001-2005), soils were sampled from no-tillage (NT), rotary tillage (RT), and conventional tillage (moldboard tillage, CT) plots at the Luancheng Agriculture and Ecology Experimental Station in Hebei Province, China, and the amount, size distribution, and fractal dimension of the aggregates were examined by dry and wet sieving methods. The results indicated that NT significantly increased the topsoil (0-5 cm) bulk density (BD), while RT maintained a lower BD as CT. Dry sieving results showed that NT had higher macro-aggregate content (R0.25), and a larger mean weight diameter (MWD) and geometric mean diameter (GMD) than other treatments in the 0-10 cm layer, while RT showed no difference from CT. In wet sieving, results showed that most of the aggregates were unstable, and the MWD and GMD of water-table aggregates showed the trend of NT 〉 RT 〉 CT. At 0-5 cm layer, the fractal dimension (D) of water-stable aggregates under NT was lower than it was under RT and CT. At 5-10 cm, RT yielded the highest D, and showed stability. After four years, NT increased the aggregation and the stability of soil aggregates; while due to intense disturbance, the aggregation and stability of the upper layer (0-10 cm) under RT and CT decreased.展开更多
High temperature stress(HTS) on spring maize(Zea mays L.) during the filling stage is the key factor that limits the yield increase in the North China Plain(NCP).Subsoiling(SS) and ridge tillage(R) were intr...High temperature stress(HTS) on spring maize(Zea mays L.) during the filling stage is the key factor that limits the yield increase in the North China Plain(NCP).Subsoiling(SS) and ridge tillage(R) were introduced to enhance the ability of spring maize to resist HTS during the filling stage.The field experiments were conducted during the 2011 and 2012 maize growing seasons at Wuqiao County,Hebei Province,China.Compared with rotary tillage(RT),the net photosynthetic rate,stomatal conductance,transpiration rate,and chlorophyll relative content(SPAD) of maize leaves was increased by 40.0,42.6,12.8,and 29.7% under SS,and increased by 20.4,20.0,5.4,and 14.2% under R,repectively.However,the treatments reduce the intercellular CO 2 concentration under HTS.The SS and R treatments increased the relative water content(RWC) by 11.9 and 6.2%,and the water use efficiency(WUE) by 24.3 and 14.3%,respectively,compared with RT.The SS treatment increased the root length density and soil moisture in the 0-80 cm soil profile,whereas the R treatment increased the root length density and soil moisture in the 0-40 cm soil profile compared with the RT treatment.Compared with 2011,the number of days with temperatures 33°C was more 2 d and the mean day temperature was higher 0.9°C than that in 2012,whereas the plant yield decreased by 2.5,8.5 and 10.9%,the net photosynthetic rate reduced by 7.5,10.5 and 18.0%,the RWC reduced by 3.9,5.6 and 6.2%,and the WUE at leaf level reduced by 1.8,5.2 and 13.1% in the SS,R and RT treatments,respectively.Both the root length density and the soil moisture also decreased at different levels.The yield,photosynthetic rate,plant water status,root length density,and soil moisture under the SS and R treatments declined less than that under the RT treatment.The results indicated that SS and R can enhance the HTS resistance of spring maize during the filling stage,and led to higher yield by directly improving soil moisture and root growth and indirectly improving plant water status,photosynthesis and grain filling.The study can provide a theoretical basis for improving yield of maize by adjusting soil tillage in the NCP.展开更多
文摘Conservation Agriculture(CA)covers more than 205 million hectares in the world.This made it possible to face and mitigate the challenges of climate change,reducing soil erosion and providing multiple ecosystem services.The first elementary factor influenced is the yield evaluation.It has a direct effect on farmers’choices for sustainable production.The present article records a review focused on wheat yield average positive change compared between conventional tillage(CT)and no tillage(NT)systems.The international database collected showed that NT is adaptable everywhere.The results of wheat yield differentiation showed the influence of crop rotation depending on stations located in different climatic zones.In more than 40 years of research,specialists have succeeded in demonstrating the importance of crop productivity like wheat.The whole integrates also experimentations where the initiation starts more than ten years.
基金jointly supported by the Key R&D Program of Jiangsu ProvinceChina(BE2022338)+3 种基金the Jiangsu Agriculture Science and Technology Innovation FundChina(CX(20)1012)the National Natural Science Foundation of China(31801293)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China。
文摘Biaxia lrotary tillage in dryland(DBRT)can complete biaxial rotary tillage with straw incorporation,secondary suppression,and ditching,and it has been previously studied in direct-seeded rice and wheat.However,the effects of DBRT on the mechanically transplanted rice yield and greenhouse gas emissions remain unclear.To evaluate the effects of DBRT on improving the food security of mechanically transplanted rice and reducing the greenhouse gas emissions,we conducted an experiment for two years with wheat straw incorporation.Three tillage methods were set up:DBRT,uniaxial rotary tillage in dryland and paddy(DPURT),and uniaxial rotary tillage in paddy(PURT).The results showed that compared with DPURT and PURT,DBRT increased the yield of machine-transplanted rice by 7.5-11.0%and 13.3-26.7%,respectively,while the seasonal cumulative CH_(4) emissions were reduced by 13.9-21.2%and 30.2-37.0%,respectively,and the seasonal cumulative N_(2)O emissions were increased by 13.5-28.6%and 50.0-73.1%,respectively.Consequently,DBRT reduced the global warming potential by 10.7-15.5%and 23.7-28.6%,respectively,andtheyield-scaledglobalwarmingpotentialby18.2-21.8%and36.4-39.3%,respectively,compared to DPURT and PURT.These results were mainly related to the fact that DBRT significantly reduced soil bulk density and increased soil redox potential(Eh).Therefore,implementing DBRT in machine-transplanted rice fields is feasible,which cannot only increase the rice yield,but also reduce the greenhouse gas emissions.
基金financially supported by the Joint Funds of the National Natural Science Foundation of China(U22A20609)the National Key Research and Development Program of China(2021YFD1901102-4)+2 种基金the State Key Laboratory of Integrative Sustainable Dryland Agriculture(in preparation)the Shanxi Agricultural University,China(202003-3)the Open Fund from the State Key Laboratory of Soil Environment and Nutrient Resources of Shanxi Province,China(2020002)。
文摘Tillage practices during the fallow period benefit water storage and yield in dryland wheat crops.However,there is currently no clarity on the responses of soil organic carbon(SOC),total nitrogen(TN),and available nutrients to tillage practices within the growing season.This study evaluated the effects of three tillage practices(NT,no tillage;SS,subsoil tillage;DT,deep tillage)over five years on soil physicochemical properties.Soil samples at harvest stage from the fifth year were analyzed to determine the soil aggregate and aggregate-associated C and N fractions.The results indicated that SS and DT improved grain yield,straw biomass and straw carbon return of wheat compared with NT.In contrast to DT and NT,SS favored SOC and TN concentrations and stocks by increasing the soil organic carbon sequestration rate(SOCSR)and soil nitrogen sequestration rate(TNSR)in the 0-40 cm layer.Higher SOC levels under SS and NT were associated with greater aggregate-associated C fractions,while TN was positively associated with soluble organic nitrogen(SON).Compared with DT,the NT and SS treatments improved soil available nutrients in the 0-20 cm layer.These findings suggest that SS is an excellent practice for increasing soil carbon,nitrogen and nutrient availability in dryland wheat fields in North China.
基金funded by the National Natural Science Foundation of China(32271776,32171616)the Special Sichuan Postdoctoral Research Projectsthe National Natural Science Foundation of Sichuan Province,China(2024NSFSC0309,2022NSFSC1769,2022NSFSC0110).
文摘Perennial grass-legume mixtures have been extensively used to restore degraded grasslands,increasing grassland productivity and forage quality.Tillage is crucial for seedbed preparation and sustainable weed management for the establishment of grass-legume mixtures.However,a common concern is that intensive tillage may alter soil characteristics,leading to losses in soil organic carbon(SOC).We investigated the plant community composition,SOC,soil microbial biomass carbon(MBC),soil enzyme activities,and soil properties in long-term perennial grass-legume mixtures under two different tillage intensities(once and twice)as well as in a fenced grassland(FG).The establishment of grass-legume mixtures increased plant species diversity and plant community coverage,compared with FG.Compared with once tilled grassland(OTG),twice tilled grassland(TTG)enhanced the coverage of high-quality leguminous forage species by 380.3%.Grass-legume mixtures with historical tillage decreased SOC and dissolved organic carbon(DOC)concentrations,whereas soil MBC concentrations in OTG and TTG increased by 16.0%and 16.4%,respectively,compared with FG.TTG significantly decreased the activity of N-acetyl-β-D-glucosaminidase(NAG)by 72.3%,whereas soil enzymeβ-glucosidase(βG)in OTG and TTG increased by 55.9%and 27.3%,respectively,compared with FG.Correlation analysis indicated a close association of the increase in MBC andβG activities with the rapid decline in SOC.This result suggested that MBC was a key driving factor in soil carbon storage dynamics,potentially accelerating soil carbon cycling and facilitating biogeochemical cycling.The establishment of grass-legume mixtures effectively improves forage quality and boosts plant diversity,thereby facilitating the restoration of degraded grasslands.Although tillage assists in establishing legume-grass mixtures by controlling weeds,it accelerates microbial activity and organic carbon decomposition.Our findings provide a foundation for understanding the process and effectiveness of restoration management in degraded grasslands.
文摘Construction activities often involve removal of topsoil and compaction of the exposed soil by heavy equipments. Such compacted soils with low organic matter can lead to low infiltration and poor vegetation establishment. The objective of this study was to investigate the efficacy of tillage (shallow till) and compost on soil physical and biological properties in a hydroseeded lawn as a post-construction best management practice for soil compaction remediation. The experimental site received a total of four land treatments in five replicated trials and it was hydroseeded with common Bermuda grass: 1) No Tillage + Compost (NT-C), 2) No Tillage + No Compost (NT-NC;control), 3) Tillage + Compost (T-C), and 4) Tillage + No Compost (T-NC). Bulk density (BD), infiltration rate (IR), and wet aggregate stability (WAS) in each plot were measured to assess soil physical properties while soil organic matter (SOM) and enzyme activity (β-glucosidase, acid-phosphatase, and alkaline-phosphatase) were measured for soil biological properties. Over a 15-months of monitoring period, the shallow tillage loosened the soil initially, but its effect on BD without compost was diminished to control plot level (NT-NC) within 4 months after hydroseeding. Both tillage and compost led to an increase in IR, and it remained higher than control by 2 - 3 times throughout the observation period. The WAS and β-glucosidase activity decreased in tilled plot unless there was compost application. Turfgrass showed greener leaves and aggregated roots in the compost-amended plots (NT-C and T-C). Our results suggest that compost application plays a key role in improving soil physical and biological properties in hydroseeded lawns from construction sites.
基金provided by the National Natural Science Foundation of China (31701384 and 32071980)。
文摘Plastic film mulch systems are used widely in arid areas, and the associated tillage measures affect soil properties, root and crop growth, and nutrient uptake. However, much debate surrounds the most suitable tillage method for plastic film mulch systems. We conducted a two-year field experiment to explore the impact of three tillage treatments-rotary tillage before ridge–furrow plastic film mulch(MR), no-tillage before ridge–furrow plastic film mulch(MZ), and plow tillage before ridge–furrow plastic film mulch(MP)-on soil total nitrogen, available nitrogen, root stratification structure,nitrogen transfer and utilization, and maize yield. The results showed that MP had better soil quality than either MR or MZ over 2019 and 2020, with higher nitrate-nitrogen and total nitrogen in the 0–40 cm soil layer. MP improved the soil physicochemical properties more than the other treatments, producing significantly higher root numbers and root biomass for the aerial and underground nodal roots than MR and MZ. At harvest, MP had the highest root biomass density,root length density, and root surface area density in the different soil layers(0–20, 20–40, and 0–40 cm). Significant correlations occurred between root biomass and aboveground nitrogen accumulation during maize growth. During grain filling, MP had the greatest nitrogen transfer amount, significantly increasing root and aboveground nitrogen transfer by 19.63–45.82% and 11.15–24.56%, respectively, relative to the other treatments. MP significantly produced 1.36–26.73%higher grain yields and a higher grain crude protein content at harvest than MR and MZ. MP also had higher values for the nitrogen harvest index, nitrogen uptake efficiency, and partial factor productivity of nitrogen fertilizer than MR and MZ.In conclusion, plow tillage combined with a ridge–furrow plastic film mulch system facilitated maize root development and improved nitrogen utilization, thereby increasing maize yield more than the other treatments.
基金Under the auspices of Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA28070100)the National Key Research and Development Program of China(No.2022YFD1500100)+1 种基金the National Natural Science Foundation of China(No.41807085)the Earmarked Fund for China Agriculture Research System(No.CARS04)。
文摘Straw is widely incorporated into soil worldwide,but most studies have concentrated on the effects of straw mulching or incorporation with topsoil.To determine the effect of depth of straw incorporation on bacterial and fungal communities,we established a field experiment in a region in Northeast China with Haplic Chernozems using four treatments:conventional tillage(CT,tillage to a depth of 15 cm with no straw incorporation),straw incorporation with conventional tillage(SCT,tillage to a depth of 15 cm),inversion tillage(IT,tillage to a depth of 35 cm)and straw incorporation with inversion tillage(SIT,tillage to a depth of 35 cm).The soils were managed by inversion to a depth of 15 or 35 cm after harvest.The results show that soil organic carbon content was significantly higher and pH and bulk density were significantly lower in the 15–35 cm layer in IT and SIT than CT and SCT.Fungal abundance was higher with straw incorporation,but fungal diversity was lower in the 0–15 cm layer in SCT and SIT than in CT and IT.Path length in the bacterial network was shorter and connectivity was higher in CT+SCT than in IT+SIT,leading to a more complex ecosystem,and the fungal network had opposite patterns.The key taxa in the phylum Actinobacteriota and Ascomycota in the microbial networks changed dramatically at the genus level following inversion tillage with straw amendment,which may increase bacterial network resistance to environmental disturbances and unstable fungal networks,resulting in large changes in the fungal community involved in the decomposition of recalcitrant straw-derived C and the more efficient acquisition of limiting resources.
文摘Short Retraction Notice The paper does not meet the standards of "Advances in Bioscience and Biotechnology". This article has been retracted to straighten the academic record. In making this decision the Editorial Board follows COPE's Retraction Guidelines. The aim is to promote the circulation of scientific research by offering an ideal research publication platform with due consideration of internationally accepted standards on publication ethics. The Editorial Board would like to extend its sincere apologies for any inconvenience this retraction may have caused. Editor guiding this retraction: Prof. Abass Alavi (EiC of ABB). Please see the article page for more details. The full retraction notice in PDF is preceding the original paper which is marked "RETRACTED".
文摘The implementation of appropriate tillage practices is of great significance for agricultural production. However, the effects of different tillage depths on soil nutrients content and microbial communities in tobacco-planting soils are still lacking systematic research. In this study, three different tillage depths of 15 cm (T1), 20 cm (T2), and 30 cm (T3) were set up for field experiments in Liupanshui, Guizhou Province, to explore the effects of tillage depth on tobacco-planting soil nutrients and bacterial and fungal communities based on 16S rRNA and ITS sequencing and figure out the key factors affecting soil microbial communities. The results showed that T2 and T3 increased the contents of organic matter, total nitrogen, total phosphorus, available phosphorus, and available potassium in tobacco-planting soil, and increased the diversity of bacterial communities compared with T1. There was no significant difference in the structure of bacterial and fungal communities in different tillage depth treatments, but some dominant genera were significantly enriched in T2 and T3. Desulfobacter, Setophoma, Humicola, and Acremonium were significantly enriched in T2. Chthonomonas and Fusarium were significantly enriched in T3. These genera favor the decomposition of organic matter and the cycling of nutrients, and control soil pests and diseases. Redundancy analysis indicated that TP and AK were the key factors influencing the dominant genera of bacteria and fungi. This study provides a scientific basis for the selection of soil tillage depth for tobacco production in this region.
基金Supported by the Guangxi Innovation Driven Development Project(GUIKE AA20302020)Basic Scientific Research Business of Guangxi Academy of Agricultural Sciences(GUINONGKE 2021YT056)。
文摘This paper reports"the fourth set"of drilling tillage after"ploughing(hoeing)"by manpower,animal power and tractor——Fenlong tillage technology(referred to as"Fenlong technology").It makes the cultivated land and saline alkali land transformed into"sponge"farmland through"drill bit"vertically digging into the soil,one-time deep cultivation,not disturbing soil layer,and granulating the soil,to bring about the effects of"expanding the land,releasing the natural force,water conservation,disaster reduction,carbon reduction,tillage saving,fertilizer saving and grain increasing",and can broaden the space for human survival and development.It has been applied to more than 50 crops in 28 provinces,including Guangxi,Hebei and Tibet.Without increasing the use of fertilizer and water,the yield of varieties in cultivated land increased by 10%-50%,while that in saline and alkaline land increased by 20%-100%.The storage of natural precipitation increased by 100%,and drought,high temperature and low temperature decreased by 20%-30%,and carbon sequestration and emission reduction reached 20%.It is proposed that China can implement the"dual strategy"platform of farmland,saline alkali land,rivers and water bodies constructing the"incremental""five new warehouses"of grain,water,fish,sugar,etc.and"increased grain return"abroad,to ensure national security.
基金Supported by Youth Scientific Research Fund of Shanxi Province(2014021031-2)Fund for National System of Broomcorn Millet Industrial Technology of Ministry of Agriculture(CARS-07-13.5)~~
文摘[Objective] The effects of different tillage techniques on dry matter accu- mulation, soil water content, water use efficiency and yield of broomcom millet were studied. [Method] With Jinsu 9 as an experiment material, the effects of deep tillage, traditional tillage and no tillage and rotary tillage on dry matter accumulation, soil water content, water use efficiency and yield of broomcom millet were investi- gated. [Result] Dry matter accumulation rate and accumulated amount were signifi- cantly higher in the deep tillage, no tillage and rotary tillage treatments than in the conventional tillage treatment, and the highest in the deep tillage treatment. The soil water content of the deep tillage treatment at 0-100 cm was higher than those of other tillage techniques, deep tillage also exhibited the highest soil water storage, and water use efficiency values were in order of deep tillage〉rotary tillage〉no tillage〉conventional tillage. The deep tillage treatment also showed the highest grain weight per spike, 1 000-grain weight and yield, while conventional tillage exhibited the lowest values, indicating that deep tillage is most beneficial to improvement of yield and water use efficiency of broomcom millet. [Conclusion] This study provides a scientific basis for water use efficiency of broomcorh millet in its main producing areas.
基金Supported by the"11th Five-Year Plan"Significant Key Program of Guizhou Province[Guizhou Technology and Agriculture Co-word(2000)1109]Graduate Student Innovation Fund Project of Guizhou University[(2006)009]~~
文摘[Objective] The aim of the research was to find the optimal nitrogen application rate, density and seedling age for no-tillage rape in seedling stage. [Method] With the D-optimal quadratic regression design for three factors, the 310 scheme was designed to study the effects of nitrogen application rate, density and seedling age on dry matter accumulation of no-tillage rape in seedling stage. [Result] With the increase of nitrogen application rate, density and seedling age, the dry matter content appeared like a parabola, increasing firstly and then declining. The change of nitrogen application rate caused greater influence than that of density and seedling age; the interaction effects between nitrogen application rate and density were greater than that between nitrogen application rate and seedling age as well as between density and seedling age. [Conclusion] Considered comprehensively, the dry matter content of no-tillage rape in seedling stage reached the highest level (4 768.2 kg/hm2) when the nitrogen application rate, the density and the seedling age were 195 kg/hm2, 93 000 plants/hm2 and 33 d, respectively.
基金Supported by Study on Sustainable Production and Cultivation System and Nutrient Management for High-quality TobaccoSpecial Fund for Tobacco from Genetic Engineering Project of Sichuan Provincial Department of Finance(2013YCZX-003)~~
文摘Based on three years of long-term fixed-site field trial, the effects of differ- ent tillage and mulching modes on the yield and output value of tobacco and soil quality were investigated. The results showed that the yield and output value of to- bacco in tillage treatment were improved by 22.72 % and 37.23 % compared with non-tillage treatment, respectively; the yield and output value of tobacco in rotation treatment were improved by 1.83% and 19.41% compared with continuous cropping treatment, respectively; the yield and output value of tobacco in straw mulching treatment were improved by 3.55% and 2.4% compared with non-straw mulching treatment, respectively, which indicated that tillage, rotation and straw mulching could improve the yield and output value of tobacco to a certain extent; especially, the yield and output value of tobacco increased significantly after plowing under rotation conditions. The contents of available phosphorus (AP), alkali-hydrolyzable nitrogen (AN), organic matter (OM), total nitrogen (TN) and total phosphorus (TP) in non- tillage treatment were 35.14%, 9.92%, 9.57%, 4.40% and 34.16% higher compared with tillage treatment; especially, under non-tillage conditions, soil pH and contents of available potassium (AK), AP, AN,OM,TN,TP and total potassium (TK) in continu- ous cropping field were 2.01%, 48.68%, 73.09%, 11.45%, 7.71%, 7.31%, 47.68% and 11.78% higher compared with rotation field, indicating that non-tillage treatment and continuous cropping could improve the total content and available content of organic matter, nitrogen and phosphorus. Therefore, from the perspective of soil fer- tility improvement and sustainable tobacco production, continuous cropping under non-tillage conditions might be the most appropriate cropping pattern for local soil fertility improvement; aiming at improving the yield and output value of tobacco, green manure-tobacco→, green manure/wheat/maize→green manure-tobacco ro- tation might be the most appropriate cropping pattern.
基金Supported by the Special Project of Basic Scientific Research of Guangxi Academy of Agricultural Sciences(Gui Nong Ke 2013YM50)the Special Project of Basic Scientific Research of Guangxi Academy of Agricultural Sciences(Gui Nong Ke 2013YM43)the Planned Project of Guangxi Scientific Research and Technological Development(Gui Ke Neng 1346007-9)~~
文摘Two-line super hybrid rice (Oryza sativa L.) Guiliangyou 2 was taken as the experimental variety, the growth and physiological characteristics of rice under conventional tillage and smashing ridge tillage were compared based on field re- search. The results showed that smashing ridge tillage was beneficial to the tillering growth of rice plants in the the middle and later periods of tillering; under the tillage mode, the white root was more, the vigour was strong during the whole growing period, the SPAD was extremely significantly higher than that of conventional tillage, the net photosynthetic rate of the leaves was high and held green long, which were beneficial to the production and accumulation of photoassimilates; during mature pe- riod, the dry matter accumulation of the overground part under smashing ridge tillage was significantly higher than that of conventional tillage, and the number of productive ears under smashing ridge tillage was more than that of conventional tillage by 27.6×10^4/hm2, thus, the yield-increasing effect was significant and in- creased by 20.36%.
基金Supported by the National Basic Research Program of China(2007CB407204)~~
文摘Ridge tillage, which is a very common and important tillage measure in the black soil area of northeast China, has some soil and water conservation bene- fits, but has little attention. It is very important to explore the spatial distribution of the ridge direction of the arable land and its soil and water conservation benefits in different terrain conditions in the black soil area. So Binxian County of Heilongjiang Province was selected as the study area, and 168 field investigation units were ex- tracted by stratified sampling method and investigated. According to equations of slope gradient factor and slope gradient in ridge direction, and based on the soft- ware of Arcmap, SPSS and Excel, the investigation data of soil and water loss in Binxian County were analyzed and counted, The results show that in plain, hilly and mountainous areas, the average ground slope gradients are 1.92°, 6.20° and 8.27° respectively, and the average slope gradients along ridge direction are 1.33°, 4.52°and 6.45° respectively, which account for about 70%, 73% and 78% of the average ground slope gradients in the same terrain condition; the relative quantities of soil erosion in the present ridge tillage condition account for about 55%, 69% and 67% respectively of that in down-slope ridge tillage conditions, so the present ridge tillage has obviously relative soil and water conservation benefits. Based on these results, the reasons of the present ridge tillage status were analyzed, and some reform measures were proposed. The results could not only help to comprehend the spatial distribution and soil and water conservation benefits of ridge tillage in the black soil area of Northeast China, but also provide scientific references for the layout of local soil and water conservation measures.
基金supported by the National Key Technology R&D Program of China(2012BAD04B02,2013BAD07B02,and2011BAD16B10)the Special Fund for Agro-Scientific Research in the Public Interest(201103003 and 201303126-4)the Key Technology R&D Program of Jilin province,China(20126026)
文摘A four-year field experiment was conducted to investigate the effect of subsoiling depth on root morphology, nitrogen(N), phosphorus(P), and potassium(K) uptake, and grain yield of spring maize. The results indicated that subsoil tillage promoted root development,increased nutrient accumulation, and increased yield. Compared with conventional soil management(CK), root length, root surface area, and root dry weight at 0–80 cm soil depth under subsoil tillage to 30 cm(T1) and subsoil tillage to 50 cm(T2) were significantly increased, especially the proportions of roots in deeper soil. Root length, surface area, and dry weight differed significantly among three treatments in the order of T2 > T1 > CK at the12-leaf and early filling stages. The range of variation of root diameter in different soil layers in T2 treatment was the smallest, suggesting that roots were more likely to grow downwards with deeper subsoil tillage in soil. The accumulation of N, P, and K in subsoil tillage treatment was significantly increased, but the proportions of kernel and straw were different. In a comparison of T1 with T2, the grain accumulated more N and P, while K accumulation in kernel and straw varied in different years. Grain yield and biomass were increased by 12.8% and 14.6% on average in subsoil tillage treatments compared to conventional soil treatment. Although no significant differences between different subsoil tillage depths were observed for nutrient accumulation and grain yield, lodging resistance of plants was significantly improved in subsoil tillage to 50 cm, a characteristic that favors a high and stable yield under extreme environments.
基金supported by the National Key Research and Development Program of China(2016YFD0300400)the National Basic Research Program of China(973 Program,2015CB150404)+4 种基金the Special Fund for Agroscientific Research in Public Interest of China(201203100)the National Key Technologies R&D Program of China during the 12th Five-year Plan period(2012BAD04B05)the Project of Shandong Province Higher Educational Science and Technology,China(J14LF12)the Shandong Province Mount Tai Industrial Talents Program,Chinathe Shandong Province Key Agricultural Project for Application Technology Innovation,China
文摘Straw return is an important management tool for tackling and promoting soil nutrient conservation and improving crop yield in Huang-Huai-Hai Plain, China. Although the incorporation of maize straw with deep plowing and rotary tillage practices are widespread in the region, only few studies have focused on rotation tillage. To determine the effects of maize straw return on the nitrogen (N) efficiency and grain yield of winter wheat (Triticum aestivum L.), we conducted experiments in this region for 3 years. Five treatments were tested: (i) rotary tillage without straw return (RT); (ii) deep plowing tillage without straw return (DT); (iii) rotary tillage with total straw return (RS); (iv) deep plowing tillage with total straw return (DS); (v) rotary tillage of 2 years and deep plowing tillage in the 3rd year with total straw return (TS). Treatments with straw return increased kernels no. ear-1, thousand-kernel weight (TKW), grain yields, ratio of dry matter accumulation post-anthesis, and nitrogen (N) efficiency whereas reduced the ears no. ha-1 in the 2011-2012 and 2012-2013 growing seasons. Compared with the rotary tillage, deep plowing tillage significantly increased the grain yield, yield components, total dry matter accumulation, and N efficiency in 2013-2014. RS had significantly higher straw N distribution, soil inorganic nitrogen content, and soil enzymes activities in the 0-10 cm soil layer compared with the DS and TS. However, significantly lower values were ob- served in the 10-20 and 20-30 cm soil layers. TS obtained approximately equal grain yield as DS, and it also reduced the resource costs. Therefore, we conclude that TS is the most economical method for increasing grain yield and N efficiency of winter wheat in Huang-Huai-Hai Plain.
基金funded by China Agriculture Research System(CARS-02-18)National Basic Research Program of China(2015CB150404)+1 种基金Shandong Province Key Agricultural Project for Application Technology InnovationFunds of Shandong "Double Tops" Program(SYL2017YSTD02)
文摘The standard cultivation system in the North China Plain is double cropping of winter wheat and summer maize. The main effects of this cultivation system on root development and yield are decreases in soil nutrient content and depth of the plow layer under either long-term no-tillage or rotary tillage before winter wheat sowing and no tillage before summer maize sowing. In this study, we investigated the combined effects of tillage practices before winter wheat and summer maize sowing on soil properties and root growth and distribution in summer maize. Zhengdan 958(ZD958) was used as experimental material, with three tillage treatments: rotary tillage before winter wheat sowing and no tillage before summer maize sowing(RTW + NTM), moldboard plowing before winter wheat sowing and no tillage before summer maize sowing(MPW + NTM), and moldboard plowing before winter wheat sowing and rotary tillage before summer maize sowing(MPW + RTM).Tillage practice showed a significant(P < 0.05) effect on grain yield of summer maize. Grain yields under MPW + RTM and MPW + NTM were 30.6% and 24.0% higher, respectively, than that under RTW + NTM. Soil bulk density and soil penetration resistance decreased among tillage systems in the order RTW + NTM > MPW + NTM > MPW + RTM. Soil bulk densities were 3.3% and 515% lower in MPW + NTM and MPW + RTM, respectively, than that in RTW + NTM, and soil penetration resistances were respectively 17.8% and 20.4% lower,across growth stages and soil depths. Root dry matter and root length density were highest under MPW + RTM, with the resulting increased root activity leading to a yield increase of summer maize. Thus the marked effects of moldboard plowing before winter-wheat sowing on root length density, soil penetration resistance, and soil bulk density may contribute to higher yield.
文摘Tillage greatly influences the aggregation and stability of soil aggregates. This study investigated the effects of conservation tillage on soil aggregate characteristics. During a four-year study period (2001-2005), soils were sampled from no-tillage (NT), rotary tillage (RT), and conventional tillage (moldboard tillage, CT) plots at the Luancheng Agriculture and Ecology Experimental Station in Hebei Province, China, and the amount, size distribution, and fractal dimension of the aggregates were examined by dry and wet sieving methods. The results indicated that NT significantly increased the topsoil (0-5 cm) bulk density (BD), while RT maintained a lower BD as CT. Dry sieving results showed that NT had higher macro-aggregate content (R0.25), and a larger mean weight diameter (MWD) and geometric mean diameter (GMD) than other treatments in the 0-10 cm layer, while RT showed no difference from CT. In wet sieving, results showed that most of the aggregates were unstable, and the MWD and GMD of water-table aggregates showed the trend of NT 〉 RT 〉 CT. At 0-5 cm layer, the fractal dimension (D) of water-stable aggregates under NT was lower than it was under RT and CT. At 5-10 cm, RT yielded the highest D, and showed stability. After four years, NT increased the aggregation and the stability of soil aggregates; while due to intense disturbance, the aggregation and stability of the upper layer (0-10 cm) under RT and CT decreased.
基金supported by the National Key Technologies R&D Program of China during the 12th Five-Year Plan period(2011BAD16B15)
文摘High temperature stress(HTS) on spring maize(Zea mays L.) during the filling stage is the key factor that limits the yield increase in the North China Plain(NCP).Subsoiling(SS) and ridge tillage(R) were introduced to enhance the ability of spring maize to resist HTS during the filling stage.The field experiments were conducted during the 2011 and 2012 maize growing seasons at Wuqiao County,Hebei Province,China.Compared with rotary tillage(RT),the net photosynthetic rate,stomatal conductance,transpiration rate,and chlorophyll relative content(SPAD) of maize leaves was increased by 40.0,42.6,12.8,and 29.7% under SS,and increased by 20.4,20.0,5.4,and 14.2% under R,repectively.However,the treatments reduce the intercellular CO 2 concentration under HTS.The SS and R treatments increased the relative water content(RWC) by 11.9 and 6.2%,and the water use efficiency(WUE) by 24.3 and 14.3%,respectively,compared with RT.The SS treatment increased the root length density and soil moisture in the 0-80 cm soil profile,whereas the R treatment increased the root length density and soil moisture in the 0-40 cm soil profile compared with the RT treatment.Compared with 2011,the number of days with temperatures 33°C was more 2 d and the mean day temperature was higher 0.9°C than that in 2012,whereas the plant yield decreased by 2.5,8.5 and 10.9%,the net photosynthetic rate reduced by 7.5,10.5 and 18.0%,the RWC reduced by 3.9,5.6 and 6.2%,and the WUE at leaf level reduced by 1.8,5.2 and 13.1% in the SS,R and RT treatments,respectively.Both the root length density and the soil moisture also decreased at different levels.The yield,photosynthetic rate,plant water status,root length density,and soil moisture under the SS and R treatments declined less than that under the RT treatment.The results indicated that SS and R can enhance the HTS resistance of spring maize during the filling stage,and led to higher yield by directly improving soil moisture and root growth and indirectly improving plant water status,photosynthesis and grain filling.The study can provide a theoretical basis for improving yield of maize by adjusting soil tillage in the NCP.