期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
NEW ERROR ESTIMATES FOR LINEAR TRIANGLE FINITE ELEMENTS IN THE STEKLOV EIGENVALUE PROBLEM
1
作者 Hal Bi Yidu Yang +1 位作者 Yuanyuan Yu Jiayu Han 《Journal of Computational Mathematics》 SCIE CSCD 2018年第5期682-692,共11页
This paper is concerned with the finite elements approximation for the Steklov eigen- value problem on concave polygonal domain. We make full use of the regularity estimate and the characteristic of edge average inter... This paper is concerned with the finite elements approximation for the Steklov eigen- value problem on concave polygonal domain. We make full use of the regularity estimate and the characteristic of edge average interpolation operator of nonconforming Crouzeix- Raviart element, and prove a new and optimal error estimate in || ||o,δΩ for the eigenfunc- tion of linear conforming finite element and the nonconforming Crouzeix-Raviart element. Finally, we present some numerical results to support the theoretical analysis. 展开更多
关键词 Steklov eigenvalue problem concave polygonal domain Linear conforming finite element Nonconforming Crouzeix-Raviart element Error estimates.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部