Occasional irregular initial solidification phenomena,including stickers,deep oscillation marks,depressions,and surface cracks of strand shells in continuous casting molds,are important limitations for developing the ...Occasional irregular initial solidification phenomena,including stickers,deep oscillation marks,depressions,and surface cracks of strand shells in continuous casting molds,are important limitations for developing the high-efficiency continuous casting of steels.The application of mold thermal monitoring(MTM) systems,which use thermocouples to detect and respond to temperature variations in molds,has become an effective method to address irregular initial solidification phenomena.Such systems are widely applied in numerous steel companies for sticker breakout prediction.However,monitoring the surface defects of strands remains immature.Hence,indepth research is necessary to utilize the potential advantages and comprehensive monitoring of MTM systems.This paper summarizes what is included in the irregular initial solidification phenomena and systematically reviews the current state of research on these phenomena by the MTM systems.Furthermore,the influences of mold slag behavior on monitoring these phenomena are analyzed.Finally,the remaining problems of the formation mechanisms and investigations of irregular initial solidification phenomena are discussed,and future research directions are proposed.展开更多
Strawberry (Fragaria × ananassa Duch.) is a significant global soft fruit crop, prized for its nutrient content and pleasant flavor. However, diseases, particularly grey mold caused by Botrytis cinerea Pers. Fr. ...Strawberry (Fragaria × ananassa Duch.) is a significant global soft fruit crop, prized for its nutrient content and pleasant flavor. However, diseases, particularly grey mold caused by Botrytis cinerea Pers. Fr. poses major constraints to strawberry production and productivity. Grey mold severely impacts fruit quality and quantity, diminishing market value. This study evaluated five B. cinerea isolates from various locations in the Ri-Bhoi district of Meghalaya. All isolates were pathogenic, with isolate SGM 2 identified as highly virulent. Host range studies showed the pathogen-producing symptoms in the fava bean pods, marigold, gerbera, and chrysanthemum flowers and in the fava bean, gerbera, and lettuce leaves. In vitro tests revealed that neem extract (15% w/v) achieved the highest mycelial growth inhibition at 76.66%, while black turmeric extract (5% w/v) had the lowest inhibition at 9.62%. Dual culture methods with bio-control agents indicated that Bacillus subtilis recorded the highest mean inhibition at 77.03%, while Pseudomonas fluorescens had the lowest at 20.36% against the two virulent isolates. Pot evaluations demonstrated that B. subtilis resulted in the lowest percent disease index at 20.59%, followed by neem extract at 23.31%, with the highest disease index in the control group at 42.51%. Additionally, B. subtilis significantly improved plant growth, yielding an average of 0.32 kg compared to 0.14 kg in the control. The promising results of B. subtilis and neem leaf extract from this study suggest their potential for eco-friendly managing grey mold in strawberries under field conditions.展开更多
The control of oxygen is paramount in achieving high-performance titanium(Ti)parts by powder metallurgy such as metal in-jection molding(MIM).In this study,we purposely selected the Ti and Ti-6Al-4V powders as the ref...The control of oxygen is paramount in achieving high-performance titanium(Ti)parts by powder metallurgy such as metal in-jection molding(MIM).In this study,we purposely selected the Ti and Ti-6Al-4V powders as the reference materials since these two are the most representative Ti materials in the industry.Herein,hydride-dehydride(HDH)Ti powders were pre-oxidized to examine the ef-fect of oxygen variation on the characteristics of oxide layer on the particle surface and its resultant color feature.The results indicate that the thickness and Ti oxide level(Ti^(0)→Ti^(4+))of the oxide layer on the HDH Ti powders increased as the oxygen content increased,lead-ing to the transition of color appearance from grey,brown to blue.This work aids in the powder feedstock selection at the initial stage in powder metallurgy.In addition,the development of oxygen content was comprehensively studied during the MIM process using the gas-atomized(GA)Ti-6Al-4V powders.Particularly,the oxygen variation in the form of oxide layer,the change of oxygen content in the powders,and the relevant parts were investigated during the processes of kneading,injection,debinding,and sintering.The oxygen vari-ation was mainly concentrated in the sintering stage,and the content increased with the increase of sintering temperature.The variation of oxygen content during the MIM process demonstrates the crucial role of powder feedstock and sintering stage in controlling oxygen con-tent.This work provides a piece of valuable information on oxygen detecting,control,and manipulation for the powder and processing in the industry of Ti and its alloys by powder metallurgy.展开更多
The effects of the water-cement ratio and the molding temperature on the hydration heat of cement were investigated with semi-adiabatic calorimetry.The specimens were prepared with water-cement ratios of 0.31,0.38,and...The effects of the water-cement ratio and the molding temperature on the hydration heat of cement were investigated with semi-adiabatic calorimetry.The specimens were prepared with water-cement ratios of 0.31,0.38,and 0.45,and the molding temperature was specified at 10 and 20℃.The experimental results show that,as the water-binder ratio increases,the value of the second temperature peak on the temperature curve of the cement paste decreases,and the age at which the peak appears is delayed.The higher the water-cement ratio,the higher the hydration heat release in the early period of cement hydration,but this trend reverses in the late period.There are intersection points of the total hydration heat curve of the cement pastes under the influence of the water-cement ratio,and this law can be observed at both molding temperatures.With the increase in the molding temperature,the age of the second temperature peak on the temperature curve of the cement paste will advance,but the temperature peak will decrease.The higher the molding temperature,the earlier the acceleration period of the cement hydration began,and the larger the hydration heat of the cement in the early stage,but the smaller the total heat in the late period.A subsection function calculation model of the hydration heat,which was based on the existing models,was proposed in order to predict the heat of the hydration of the concrete.展开更多
During the continuous casting process of high-Mn high-Al steels,various types of gases such as Ar need to escape through the top of the mold.In which,the behavior of bubbles traversing the liquid slag serves as a rest...During the continuous casting process of high-Mn high-Al steels,various types of gases such as Ar need to escape through the top of the mold.In which,the behavior of bubbles traversing the liquid slag serves as a restrictive link,closely associated with viscosity and the thickness of liquid slag.In contrast to two-dimensional surface observation,three-dimensional(3D)analysis method can offer a more intuitive,accurate,and comprehensive information.Therefore,this study employs a 3D X-ray microscope(3D-XRM)to obtained spatial distribution and 3D morphological characteristics of residual bubbles in mold flux under different basicity of liquid slag,different temperatures,and different holding times.The results indicate that as basicity of slag increases from 0.52 to 1.03,temperature increases from 1423 to 1573 K,the viscosity of slag decreases,the floating rate of bubbles increases.In addition,when holding time increases from 10 to 30 s,the bubbles floating distance increases,and the volume fraction and average equivalent sphere diameter of the bubbles solidified in the mold flux gradually decreases.In one word,increasing the basicity,temperature,and holding time leading to an increase in the removal rate of bubbles especially for the large.These findings of bubbles escape behavior provide valuable insights into optimizing low basicity mold flux for high-Mn high-Al steels.展开更多
The properties of the magnetic mold in magnetic mold casting directly determine the quality of the final cast parts.In this study,the magnetic mold properties in magnetic mold casting,were studied utilizing a coupled ...The properties of the magnetic mold in magnetic mold casting directly determine the quality of the final cast parts.In this study,the magnetic mold properties in magnetic mold casting,were studied utilizing a coupled electromagnetic-structural method through numerical simulation.This study investigated key factors including equivalent stress,the distribution of tensile and compressive stresses,and the area ratio of tensile stress.It compared molds made entirely of magnetic materials with those made partially of magnetic materials.Simulation results indicate that as current increases from 4 A to 8 A,both the initial magnetic mold and the material-replaced magnetic mold initially show an increasing trend in equivalent stress,tensile-compressive stress,and the area ratio of tensile stress,peaking at 6 A before declining.After material replacement,the area ratio of tensile stress at 6 A decreases to 19.84%,representing a reduction of 29.72%.Magnetic molds comprising a combination of magnetic and non-magnetic materials exhibit sufficient strength and a reduced area ratio of tensile stress compared to those made entirely from magnetic materials.This study provides valuable insights for optimizing magnetic mold casting processes and offers practical guidance for advancing the application of magnetic molds.展开更多
The important supporting component in a gas turbine is the casing,which has the characteristics of large size,complex structure,and thin wall.In the context of existing 3DP sand casting processes,casting crack defects...The important supporting component in a gas turbine is the casing,which has the characteristics of large size,complex structure,and thin wall.In the context of existing 3DP sand casting processes,casting crack defects are prone to occur.This leads to an increase in the scrap rate of casings,causing significant resource wastage.Additionally,the presence of cracks poses a significant safety hazard after the casings are put into service.The generation of different types of crack defects in stainless steel casings is closely related to casting stress and the high-temperature concession of the sand mold.Therefore,the types and causes of cracks in stainless steel casing products,based on their structural characteristics,were systematically analyzed.Various sand molds with different internal topology designs were printed using the 3DP technology to investigate the impact of sand mold structures on high-temperature concession.The optimal sand mold structure was used to cast casings,and the crack suppression effect was verified by analyzing its eddy current testing results.The experimental results indicate that the skeleton structure has an excellent effect on suppressing cracks in the casing.This research holds important theoretical and engineering significance in improving the quality of casing castings and reducing production costs.展开更多
Effectiveness and safety of a sports mouthguard depend on its thickness and material, and the thermoforming process affects these. The purpose of this study was to clarify the effects of differences in molding mechani...Effectiveness and safety of a sports mouthguard depend on its thickness and material, and the thermoforming process affects these. The purpose of this study was to clarify the effects of differences in molding mechanisms on the lower molding temperature limit and molding time in dental thermoforming. Ethylene vinyl acetate resin mouthguard sheet and two thermoforming machines;vacuum blower molding machine and vacuum ejector/pressure molding machine were used. The molding pressures for suction molding were −0.018 MPa for vacuum blower molding and −0.090 MPa for vacuum ejector molding, and for pressure molding was set to 0.090 MPa or 0.450 MPa. Based on the manufacturer’s standard molding temperature of 95˚C, the molding temperature was lowered in 2.5˚C increments to determine the lower molding temperature limit at which no molding defects occurred. In order to investigate the difference in molding time depending on the molding mechanism, the duration of molding pressure was adjusted in each molding machine, and the molding time required to obtain a sample without molding defects was measured. The molding time of each molding machine were compared using one-way analysis of variance. The lower molding temperature limit was 90.0˚C for the vacuum blower machine, 77.5˚C for the vacuum ejector machine, 77.5˚C for the pressure molding machine at 0.090 MPa, and 67.5˚C for the pressure molding machine at 0.45 MPa. The lower molding temperature limit was higher for lower absolute values of molding pressure. The molding time was shorter for pressure molding than for suction molding. Significant differences were observed between all conditions except between the pressure molding machine at 0.090 MPa and 0.45 MPa (P < 0.01). A comparison of the differences in lower molding temperature limit and molding time due to molding mechanisms in dental thermoforming revealed that the lower molding temperature limit depends on the molding pressure and that the molding time is longer for suction molding than for pressure molding.展开更多
Darcy’s law is widely used to describe the flow in porous media in which there is a linear relationship between fluid velocity and pressure gradient. However, it has been found that for high numbers of Reynolds this ...Darcy’s law is widely used to describe the flow in porous media in which there is a linear relationship between fluid velocity and pressure gradient. However, it has been found that for high numbers of Reynolds this law ceases to be valid. In this work, the Ergun equation is employed to consider the non-linearity of air velocity with the pressure gradient in casting sands. The contribution of non-linearity to the total flow in terms of a variable defined as a non-Darcy flow fraction is numerically quantified. In addition, the influence of the shape factor of the sand grains on the non-linear flow fraction is analyzed. It is found that for values of the Reynolds number less or equal than 1, the contribution of non-linearity for spherical particles is around 1.15%.展开更多
基金supported by the National Natural Science Foundation of China(No.52274319)。
文摘Occasional irregular initial solidification phenomena,including stickers,deep oscillation marks,depressions,and surface cracks of strand shells in continuous casting molds,are important limitations for developing the high-efficiency continuous casting of steels.The application of mold thermal monitoring(MTM) systems,which use thermocouples to detect and respond to temperature variations in molds,has become an effective method to address irregular initial solidification phenomena.Such systems are widely applied in numerous steel companies for sticker breakout prediction.However,monitoring the surface defects of strands remains immature.Hence,indepth research is necessary to utilize the potential advantages and comprehensive monitoring of MTM systems.This paper summarizes what is included in the irregular initial solidification phenomena and systematically reviews the current state of research on these phenomena by the MTM systems.Furthermore,the influences of mold slag behavior on monitoring these phenomena are analyzed.Finally,the remaining problems of the formation mechanisms and investigations of irregular initial solidification phenomena are discussed,and future research directions are proposed.
文摘Strawberry (Fragaria × ananassa Duch.) is a significant global soft fruit crop, prized for its nutrient content and pleasant flavor. However, diseases, particularly grey mold caused by Botrytis cinerea Pers. Fr. poses major constraints to strawberry production and productivity. Grey mold severely impacts fruit quality and quantity, diminishing market value. This study evaluated five B. cinerea isolates from various locations in the Ri-Bhoi district of Meghalaya. All isolates were pathogenic, with isolate SGM 2 identified as highly virulent. Host range studies showed the pathogen-producing symptoms in the fava bean pods, marigold, gerbera, and chrysanthemum flowers and in the fava bean, gerbera, and lettuce leaves. In vitro tests revealed that neem extract (15% w/v) achieved the highest mycelial growth inhibition at 76.66%, while black turmeric extract (5% w/v) had the lowest inhibition at 9.62%. Dual culture methods with bio-control agents indicated that Bacillus subtilis recorded the highest mean inhibition at 77.03%, while Pseudomonas fluorescens had the lowest at 20.36% against the two virulent isolates. Pot evaluations demonstrated that B. subtilis resulted in the lowest percent disease index at 20.59%, followed by neem extract at 23.31%, with the highest disease index in the control group at 42.51%. Additionally, B. subtilis significantly improved plant growth, yielding an average of 0.32 kg compared to 0.14 kg in the control. The promising results of B. subtilis and neem leaf extract from this study suggest their potential for eco-friendly managing grey mold in strawberries under field conditions.
基金financially supported by the National Key Research and Development Program of China(No.2021 YFB3701900)the National Natural Science Foundation Program of China(No.51971036)the Open Research Fund of State Key Laboratory of Mesoscience and Engineering(No.MESO-23-D07).
文摘The control of oxygen is paramount in achieving high-performance titanium(Ti)parts by powder metallurgy such as metal in-jection molding(MIM).In this study,we purposely selected the Ti and Ti-6Al-4V powders as the reference materials since these two are the most representative Ti materials in the industry.Herein,hydride-dehydride(HDH)Ti powders were pre-oxidized to examine the ef-fect of oxygen variation on the characteristics of oxide layer on the particle surface and its resultant color feature.The results indicate that the thickness and Ti oxide level(Ti^(0)→Ti^(4+))of the oxide layer on the HDH Ti powders increased as the oxygen content increased,lead-ing to the transition of color appearance from grey,brown to blue.This work aids in the powder feedstock selection at the initial stage in powder metallurgy.In addition,the development of oxygen content was comprehensively studied during the MIM process using the gas-atomized(GA)Ti-6Al-4V powders.Particularly,the oxygen variation in the form of oxide layer,the change of oxygen content in the powders,and the relevant parts were investigated during the processes of kneading,injection,debinding,and sintering.The oxygen vari-ation was mainly concentrated in the sintering stage,and the content increased with the increase of sintering temperature.The variation of oxygen content during the MIM process demonstrates the crucial role of powder feedstock and sintering stage in controlling oxygen con-tent.This work provides a piece of valuable information on oxygen detecting,control,and manipulation for the powder and processing in the industry of Ti and its alloys by powder metallurgy.
基金the National Natural Science Foundation of China(Nos.52368032 and 51808272)the China Postdoctoral Science Foundation(No.2023M741455)+1 种基金the Tianyou Youth Talent Lift Program of Lanzhou Jiaotong UniversityGansu Province Youth Talent Support Project(No.GXH20210611-10)。
文摘The effects of the water-cement ratio and the molding temperature on the hydration heat of cement were investigated with semi-adiabatic calorimetry.The specimens were prepared with water-cement ratios of 0.31,0.38,and 0.45,and the molding temperature was specified at 10 and 20℃.The experimental results show that,as the water-binder ratio increases,the value of the second temperature peak on the temperature curve of the cement paste decreases,and the age at which the peak appears is delayed.The higher the water-cement ratio,the higher the hydration heat release in the early period of cement hydration,but this trend reverses in the late period.There are intersection points of the total hydration heat curve of the cement pastes under the influence of the water-cement ratio,and this law can be observed at both molding temperatures.With the increase in the molding temperature,the age of the second temperature peak on the temperature curve of the cement paste will advance,but the temperature peak will decrease.The higher the molding temperature,the earlier the acceleration period of the cement hydration began,and the larger the hydration heat of the cement in the early stage,but the smaller the total heat in the late period.A subsection function calculation model of the hydration heat,which was based on the existing models,was proposed in order to predict the heat of the hydration of the concrete.
基金financially supported by the National Natural Science Foundation of China(Nos.52274315 and 52374320)the Fundamental Research Funds for the Central Universities(Nos.FRF-TP-22-011A1 and FRF-DF22-16)。
文摘During the continuous casting process of high-Mn high-Al steels,various types of gases such as Ar need to escape through the top of the mold.In which,the behavior of bubbles traversing the liquid slag serves as a restrictive link,closely associated with viscosity and the thickness of liquid slag.In contrast to two-dimensional surface observation,three-dimensional(3D)analysis method can offer a more intuitive,accurate,and comprehensive information.Therefore,this study employs a 3D X-ray microscope(3D-XRM)to obtained spatial distribution and 3D morphological characteristics of residual bubbles in mold flux under different basicity of liquid slag,different temperatures,and different holding times.The results indicate that as basicity of slag increases from 0.52 to 1.03,temperature increases from 1423 to 1573 K,the viscosity of slag decreases,the floating rate of bubbles increases.In addition,when holding time increases from 10 to 30 s,the bubbles floating distance increases,and the volume fraction and average equivalent sphere diameter of the bubbles solidified in the mold flux gradually decreases.In one word,increasing the basicity,temperature,and holding time leading to an increase in the removal rate of bubbles especially for the large.These findings of bubbles escape behavior provide valuable insights into optimizing low basicity mold flux for high-Mn high-Al steels.
基金the National Natural Science Foundation of China(No.51875062,No.52205336)the China Postdoctoral Science Foundation(No.2021M700567).
文摘The properties of the magnetic mold in magnetic mold casting directly determine the quality of the final cast parts.In this study,the magnetic mold properties in magnetic mold casting,were studied utilizing a coupled electromagnetic-structural method through numerical simulation.This study investigated key factors including equivalent stress,the distribution of tensile and compressive stresses,and the area ratio of tensile stress.It compared molds made entirely of magnetic materials with those made partially of magnetic materials.Simulation results indicate that as current increases from 4 A to 8 A,both the initial magnetic mold and the material-replaced magnetic mold initially show an increasing trend in equivalent stress,tensile-compressive stress,and the area ratio of tensile stress,peaking at 6 A before declining.After material replacement,the area ratio of tensile stress at 6 A decreases to 19.84%,representing a reduction of 29.72%.Magnetic molds comprising a combination of magnetic and non-magnetic materials exhibit sufficient strength and a reduced area ratio of tensile stress compared to those made entirely from magnetic materials.This study provides valuable insights for optimizing magnetic mold casting processes and offers practical guidance for advancing the application of magnetic molds.
基金financially supported by the National Natural Science Foundation of China(No.52175352)the Xing Liao Ying Cai Project of Liaoning Province(No.XLYC2008036)the Shenyang Youth Innovation Talent Support Program(No.RC220429)。
文摘The important supporting component in a gas turbine is the casing,which has the characteristics of large size,complex structure,and thin wall.In the context of existing 3DP sand casting processes,casting crack defects are prone to occur.This leads to an increase in the scrap rate of casings,causing significant resource wastage.Additionally,the presence of cracks poses a significant safety hazard after the casings are put into service.The generation of different types of crack defects in stainless steel casings is closely related to casting stress and the high-temperature concession of the sand mold.Therefore,the types and causes of cracks in stainless steel casing products,based on their structural characteristics,were systematically analyzed.Various sand molds with different internal topology designs were printed using the 3DP technology to investigate the impact of sand mold structures on high-temperature concession.The optimal sand mold structure was used to cast casings,and the crack suppression effect was verified by analyzing its eddy current testing results.The experimental results indicate that the skeleton structure has an excellent effect on suppressing cracks in the casing.This research holds important theoretical and engineering significance in improving the quality of casing castings and reducing production costs.
文摘Effectiveness and safety of a sports mouthguard depend on its thickness and material, and the thermoforming process affects these. The purpose of this study was to clarify the effects of differences in molding mechanisms on the lower molding temperature limit and molding time in dental thermoforming. Ethylene vinyl acetate resin mouthguard sheet and two thermoforming machines;vacuum blower molding machine and vacuum ejector/pressure molding machine were used. The molding pressures for suction molding were −0.018 MPa for vacuum blower molding and −0.090 MPa for vacuum ejector molding, and for pressure molding was set to 0.090 MPa or 0.450 MPa. Based on the manufacturer’s standard molding temperature of 95˚C, the molding temperature was lowered in 2.5˚C increments to determine the lower molding temperature limit at which no molding defects occurred. In order to investigate the difference in molding time depending on the molding mechanism, the duration of molding pressure was adjusted in each molding machine, and the molding time required to obtain a sample without molding defects was measured. The molding time of each molding machine were compared using one-way analysis of variance. The lower molding temperature limit was 90.0˚C for the vacuum blower machine, 77.5˚C for the vacuum ejector machine, 77.5˚C for the pressure molding machine at 0.090 MPa, and 67.5˚C for the pressure molding machine at 0.45 MPa. The lower molding temperature limit was higher for lower absolute values of molding pressure. The molding time was shorter for pressure molding than for suction molding. Significant differences were observed between all conditions except between the pressure molding machine at 0.090 MPa and 0.45 MPa (P < 0.01). A comparison of the differences in lower molding temperature limit and molding time due to molding mechanisms in dental thermoforming revealed that the lower molding temperature limit depends on the molding pressure and that the molding time is longer for suction molding than for pressure molding.
文摘Darcy’s law is widely used to describe the flow in porous media in which there is a linear relationship between fluid velocity and pressure gradient. However, it has been found that for high numbers of Reynolds this law ceases to be valid. In this work, the Ergun equation is employed to consider the non-linearity of air velocity with the pressure gradient in casting sands. The contribution of non-linearity to the total flow in terms of a variable defined as a non-Darcy flow fraction is numerically quantified. In addition, the influence of the shape factor of the sand grains on the non-linear flow fraction is analyzed. It is found that for values of the Reynolds number less or equal than 1, the contribution of non-linearity for spherical particles is around 1.15%.