In this paper, the analytical solution of stress field for a strained reinforcement layer bonded to a lip-shaped crack under a remote mode III uniform load and a concentrated load is obtained explicitly in the series ...In this paper, the analytical solution of stress field for a strained reinforcement layer bonded to a lip-shaped crack under a remote mode III uniform load and a concentrated load is obtained explicitly in the series form by using the technical of conformal mapping and the method of analytic continuation. The effects of material combinations, bond of interface and geometric configurations on interfaciai stresses generated by eigenstrain, remote load and concentrated load are studied. The results show that the stress concentration and interfaciai stresses can be reduced by rational material combinations and geometric configurations designs for different load forms.展开更多
The optimization of high density and concentrated-weight freights loading requires an even distribution of the freight's weight and unconcentrated loading on the floor of the car.Based on the characteristics of co...The optimization of high density and concentrated-weight freights loading requires an even distribution of the freight's weight and unconcentrated loading on the floor of the car.Based on the characteristics of concentrated-weight category freights,an improvement method is put forward to build freight towers and a greedy-construction algorithm is utilized based on heuristic information for the initial layout.Then a feasibility analysis is performed to judge if the balanced and unconcentrated loading constrains are reached.Through introducing optimization or adjustment methods,an overall optimal solution can be obtained.Experiments are conducted using data generated from real cases showing the effectiveness of our approach: volume utility ratio of 90.4% and load capacity utility ratio of 86.7% which is comparably even to the packing of the general freights.展开更多
This paper deals with the determination of the thermo-elastic displacements and stresses in a multi-layered body set up in different layers of different thickness having different elastic properties due to the applica...This paper deals with the determination of the thermo-elastic displacements and stresses in a multi-layered body set up in different layers of different thickness having different elastic properties due to the application of heat and a concentrated load in the uppermost surface of the medium. Each layer is assumed to be made of homogeneous and isotropic elastic material. The relevant displacement components for each layer are taken to be axisymmetric about a line, which is perpendicular to the plane surfaces of all layers. The stress function for each layer, therefore, satisfies a single equation in absence of any body forces. The equation is then solved by integral transform technique. Analytical expressions for thermo-elastic displacements and stresses in the underlying mass and the corresponding numerical codes are constructed for any number of layers. However, the numerical comparison is made for three and four layers.展开更多
The strain difference of steel and concrete under vertical concentrated load was analyzed on the basis of elastic theory, and was compared with ideal solution of steel and concrete under vertical uniform load. The res...The strain difference of steel and concrete under vertical concentrated load was analyzed on the basis of elastic theory, and was compared with ideal solution of steel and concrete under vertical uniform load. The results indicate that the computing formula concluded from the paper is believable. The practical structure usually bears concentrated load, so it can be used in the practical engineering.展开更多
In the presentmanuscript,a Layer-Wise(LW)generalizedmodel is proposed for the linear static analysis of doublycurved shells constrained with general boundary conditions under the influence of concentrated and surface ...In the presentmanuscript,a Layer-Wise(LW)generalizedmodel is proposed for the linear static analysis of doublycurved shells constrained with general boundary conditions under the influence of concentrated and surface loads.The unknown field variable is modelled employing polynomials of various orders,each of them defined within each layer of the structure.As a particular case of the LW model,an Equivalent Single Layer(ESL)formulation is derived too.Different approaches are outlined for the assessment of external forces,as well as for non-conventional constraints.The doubly-curved shell is composed by superimposed generally anisotropic laminae,each of them characterized by an arbitrary orientation.The fundamental governing equations are derived starting from an orthogonal set of principal coordinates.Furthermore,generalized blending functions account for the distortion of the physical domain.The implementation of the fundamental governing equations is performed bymeans of the Generalized Differential Quadrature(GDQ)method,whereas the numerical integrations are computed employing theGeneralized IntegralQuadrature(GIQ)method.In the post-processing phase,an effective procedure is adopted for the reconstruction of stress and strain through-the-thickness distributions based on the exact fulfillment of three-dimensional equilibrium equations.A series of systematic investigations are performed in which the static response of structures with various curvatures and lamination schemes,calculated by the present methodology,have been successfully compared to those ones obtained fromrefined finite element three-dimensional simulations.Even though the present LW approach accounts for a two-dimensional assessment of the structural problem,it is capable of well predicting the three-dimensional response of structures with different characteristics,taking into account a reduced computational cost and pretending to be a valid alternative to widespread numerical implementations.展开更多
Based upon the fundamental equations of three dimensional elasticity, the state equation for axisymmetric bending of laminated transversely isotropic circular plate is established and the concentrated force on plate s...Based upon the fundamental equations of three dimensional elasticity, the state equation for axisymmetric bending of laminated transversely isotropic circular plate is established and the concentrated force on plate surface is expanded into Fourier_Bessel's series, therefore, an analytical solution for the problem is presented. Every fundamental equation of three dimensional elasticity can be exactly satisfied by the solution and all the independent elastic constants can be taken into account fully, furthermore, the continuity conditions between plies can also be satisfied.展开更多
In the paper, the reciprocal theorem is applied to research on the bending of set square with one free oblique edge and two clamped edges under a concentrated load acting at any point. This method is simpler and general.
The reciprocal theorem was applied to solve the bending of the rectangular plates with each edges arbitrary a point supported under a concentrated load, the exact solutions and computation example are given.
In this paper the solution for the bending of corner-supported rectangular plate under concentrated load at any point (α/2, η) of the middle line of the plate is given by means of a conception called modified simply...In this paper the solution for the bending of corner-supported rectangular plate under concentrated load at any point (α/2, η) of the middle line of the plate is given by means of a conception called modified simply supported edges and the method of superposition. Some numerical example is presented. The solution obtained by this method checks very nicely with what was obtained by G.T. Shih[3] by means of spline finite element method when η=d/2. This shows that this method of solution is satisfactory.展开更多
Based on the equivalence principle of deflection and stress, the concentrated vehicle load which acts on the center of continuously reinforced concrete pavement (CRCP) is translated into the equivalent half-wave sin...Based on the equivalence principle of deflection and stress, the concentrated vehicle load which acts on the center of continuously reinforced concrete pavement (CRCP) is translated into the equivalent half-wave sine load by the Fourier transform. On the basis of this transform and the small deflection theory of elastic thin plates, the deflection and stress formulae of CRCP under the concentrated vehicle load with a hollow foundation are put forward. The sensitivity of parameters is analyzed. The results show that maximum deflection is directly proportional to the concentrated vehicle load and the slab width, and inversely proportional to the lateral bending stiffness and slab thickness. The effects of slab width and thickness are significant with regard to maximum deflection. Maximum stress is directly proportional to the concentrated vehicle load and the slab width as well as inversely proportional to slab thickness. The effect of slab thickness is significant with regard to maximum stress. According to the calculation results, the most effective measure to reduce maximum deflection and stress is to increase slab thickness.展开更多
The boundary between the near and far fields is generally defined as the distance from the vibration source beyond which ground vibrations are mainly dominated by Rayleigh waves. It is closely related to the type of v...The boundary between the near and far fields is generally defined as the distance from the vibration source beyond which ground vibrations are mainly dominated by Rayleigh waves. It is closely related to the type of vibration source and the soil properties. Based on the solutions of the Lamb's problem, the boundary at the surface between the near and far fields of ground vibration was investigated for a harmonic vertical concentrated load and an infinite line load at the surface of a visco-elastic half-space. Particularly, the variation of the boundary with the material damping was investigated for both cases. The results indicate that the material damping slightly contributes to the attenuation of vibrations in the near-source region, but significantly reduces the vibrations in the region that is at some distance away from the source. When taking the material damping into consideration, the boundary between the near and far fields tends to move towards the vibration source. Compared with the vibrations caused by a concentrated load, the vibrations induced by an infinite line load can affect a larger range of the surrounding environment, and they attenuate more slowly. This means the boundary between the near field and far field should move fitrther away from the source. Finally, the boundaries are defined in terms of R-wave length (2R) and Poisson ratio of the ground (o). For the case of a point load, the boundary is located at the distance of (5.0-6.0)2R for v≤0.30 and at the distance of (2.0--3.0)2R for v≥0.35. For the case of an infinite line load, the boundary is located at the distance (5.5-6.5)2rt for v≤0.30 and at the distance (2.5--3.5)2R for v≥0.35.展开更多
The determination of the dynamic load is one of the indispensable technologies for structure design and health monitoring for aerospace vehicles.However,it is a significant challenge to measure the external excitation...The determination of the dynamic load is one of the indispensable technologies for structure design and health monitoring for aerospace vehicles.However,it is a significant challenge to measure the external excitation directly.By contrast,the technique of dynamic load identification based on the dynamic model and the response information is a feasible access to obtain the dynamic load indirectly.Furthermore,there are multi-source uncertainties which cannot be neglected for complex systems in the load identification process,especially for aerospace vehicles.In this paper,recent developments in the dynamic load identification field for aerospace vehicles considering multi-source uncertainties are reviewed,including the deterministic dynamic load identification and uncertain dynamic load identification.The inversion methods with different principles of concentrated and distributed loads,and the quantification and propagation analysis for multi-source uncertainties are discussed.Eventually,several possibilities remaining to be explored are illustrated in brief.展开更多
An experimental study, in which six columns were loaded concentrically toinvestigate the behavior of reinforced normal strength and high strength circular columns underconcentric compression, is described. The concret...An experimental study, in which six columns were loaded concentrically toinvestigate the behavior of reinforced normal strength and high strength circular columns underconcentric compression, is described. The concrete strengths of the columns were 30 MPa and 60 MPa.The primary variables considered were the concrete strength and the amount of transversereinforcement. Test results indicate that smaller hoop spacing provides higher column capacity andgreater strength enhancement in a confined concrete core of columns. For the same lateralconfinement, high strength concrete columns develop lower strength enhancement than normal strengthconcrete columns. Both the strength enhancement ratio (f'_(cc) /f'_(co)) and the column capacityratio (P_(test)/P_o) were observed to show linear increase variations with rho_s f_(yt)/f'_c incircular columns.展开更多
An interface crack with a frictionless contact zone at the right crack-tip between two dissimilar magnetoelectroelastic materials under the action of concentrated magnetoelectromechanical loads on the crack faces is c...An interface crack with a frictionless contact zone at the right crack-tip between two dissimilar magnetoelectroelastic materials under the action of concentrated magnetoelectromechanical loads on the crack faces is considered. The open part of the crack is assumed to be magnetically impermeable and electrically permeable. The Dirichlet-Riemann boundary value problem is formulated and solved analytically. Stress, magnetic induction and electrical displacement intensity factors as well as energy release rate are thus found in analytical forms. Analytical expressions for the contact zone length have been derived. Some numerical results are presented and compared with those based on the other crack surface conditions. It is shown clearly that the location and magnitude of the applied loads could significantly affect the contact zone length, the stress intensity factor and the energy release rate.展开更多
To investigate the distribution of pollutant concentrations and pollution loads in stormwater runoff in Chongqing,six typical land use types were selected and studied from August 2009 to September 2011.Statistical ana...To investigate the distribution of pollutant concentrations and pollution loads in stormwater runoff in Chongqing,six typical land use types were selected and studied from August 2009 to September 2011.Statistical analysis on the distribution of pollutant concentrations in all water samples shows that pollutant concentrations fluctuate greatly in rainfall-runoff,and the concentrations of the same pollutant also vary greatly in different rainfall events.In addition,it indicates that the event mean concentrations (EMCs) of total suspended solids (TSS) and chemical oxygen demand (COD) from urban traffic roads (UTR) are significantly higher than those from residential roads (RR),commercial areas (CA),concrete roofs (CR),tile roofs (TRoof),and campus catchment areas (CCA);and the EMCs of total phosphorus (TP) and NH3-N from UTR and CA are 2.35-5 and 3 times of the class-III standard values specified in the Environmental Quality Standards for Surface Water (GB 3838-2002).The EMCs of Fe,Pb and Cd are also much higher than the class-III standard values.The analysis of pollution load producing coefficients (PLPC) reveals that the main pollution source of TSS,COD and TP is UTR.The analysis of correlations between rainfall factors and EMCs/PLPC indicates that rainfall duration is correlated with EMCs/PLPC of TSS for TRoof and TP for UTR,while rainfall intensity is correlated with EMCs/PLPC of TP for both CR and CCA.The results of this study provide a reference for better management of non-point source pollution in urban regions.展开更多
In the paper the simplified three-dimensional turbulent diffusion equation ofthe suspended load is deduced by the power series method. The formula on the transversedistribution of the suspended load concentration is o...In the paper the simplified three-dimensional turbulent diffusion equation ofthe suspended load is deduced by the power series method. The formula on the transversedistribution of the suspended load concentration is obtained, which is tested by a few field data onYangtze River. The simulation results indicate that the calculated data are in primary agreementwith the field data within the allowable error. It is certain value in theory and practice.展开更多
Given the challenges of re-creating complex bed load(BL)transport processes in rivers,models are preferred over gathering and examining field data.The highlight of the present research is to develop an approach to det...Given the challenges of re-creating complex bed load(BL)transport processes in rivers,models are preferred over gathering and examining field data.The highlight of the present research is to develop an approach to determine the ungauged bed load concentration(BLC_(u))utilizing the measured suspended sediment concentration(SSC)and hydraulic variables of the last four decades for the Mahanadi River Basin.This technique employs shear stress and SSC equations for turbulent open channel flow.Besides,the predicted BLC_(u)is correlated with SSC using a power relation to estimate BLC_(u)on the river and tributaries.Eventually,different BL functions(BLF)efficiency is assessed across stations.The model predicted BLC_(u)is comparable with the published data for sandy rivers and falls within±20%.Outliers in hydraulic and sedimentological statistics significantly influence estimating the BL fraction apart from higher relative ratios and catchment geology.The constants of power functions are physically linked to sediment transport configuration,mechanism,and inflow to the stream.The stream power-based BLF best predicts the BL transport,followed by shear stress and unit discharge approaches.The disparity in the estimation of BLC_(u)results from station-specific physical factors,sampling data dispersion,and associated uncertainties.展开更多
As a natural extension of the micromorphic continuum theory, the linear theory of micromorphic thermoelectroelasticity is developed to characterize the nano-micro scale behavior of thermoelectroelastic materials with ...As a natural extension of the micromorphic continuum theory, the linear theory of micromorphic thermoelectroelasticity is developed to characterize the nano-micro scale behavior of thermoelectroelastic materials with remarkable microstructures. After the basic governing equations are given and the reciprocal theorem is deduced, both the generalized variational prin- ciple and the generalized Hamilton principle for mixed boundary-initial value problems of micro- morphic thermoelectroelastodynamics in convolution form are established. Finally, as a primary application, steady state responses of an unbounded homogeneous isotropic micromorphic thermo- electroelastic body to external concentrated loads with mechanical, electric, and thermal origins are analyzed.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.10872065 and 50801025)the State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body(No. 60870005)the Doctor Station Fund of Institutions of Higher Learning(No.200805320023)
文摘In this paper, the analytical solution of stress field for a strained reinforcement layer bonded to a lip-shaped crack under a remote mode III uniform load and a concentrated load is obtained explicitly in the series form by using the technical of conformal mapping and the method of analytic continuation. The effects of material combinations, bond of interface and geometric configurations on interfaciai stresses generated by eigenstrain, remote load and concentrated load are studied. The results show that the stress concentration and interfaciai stresses can be reduced by rational material combinations and geometric configurations designs for different load forms.
基金Project(71371193)supported by the National Natural Science Foundation of ChinaProjects(2005K1001,2007K1005)supported by Guangzhou-Shenzhen Railway Company Limited,China
文摘The optimization of high density and concentrated-weight freights loading requires an even distribution of the freight's weight and unconcentrated loading on the floor of the car.Based on the characteristics of concentrated-weight category freights,an improvement method is put forward to build freight towers and a greedy-construction algorithm is utilized based on heuristic information for the initial layout.Then a feasibility analysis is performed to judge if the balanced and unconcentrated loading constrains are reached.Through introducing optimization or adjustment methods,an overall optimal solution can be obtained.Experiments are conducted using data generated from real cases showing the effectiveness of our approach: volume utility ratio of 90.4% and load capacity utility ratio of 86.7% which is comparably even to the packing of the general freights.
文摘This paper deals with the determination of the thermo-elastic displacements and stresses in a multi-layered body set up in different layers of different thickness having different elastic properties due to the application of heat and a concentrated load in the uppermost surface of the medium. Each layer is assumed to be made of homogeneous and isotropic elastic material. The relevant displacement components for each layer are taken to be axisymmetric about a line, which is perpendicular to the plane surfaces of all layers. The stress function for each layer, therefore, satisfies a single equation in absence of any body forces. The equation is then solved by integral transform technique. Analytical expressions for thermo-elastic displacements and stresses in the underlying mass and the corresponding numerical codes are constructed for any number of layers. However, the numerical comparison is made for three and four layers.
基金Project supported by the Science and Technology Development Project of Jilin Province (No. 20020631)
文摘The strain difference of steel and concrete under vertical concentrated load was analyzed on the basis of elastic theory, and was compared with ideal solution of steel and concrete under vertical uniform load. The results indicate that the computing formula concluded from the paper is believable. The practical structure usually bears concentrated load, so it can be used in the practical engineering.
文摘In the presentmanuscript,a Layer-Wise(LW)generalizedmodel is proposed for the linear static analysis of doublycurved shells constrained with general boundary conditions under the influence of concentrated and surface loads.The unknown field variable is modelled employing polynomials of various orders,each of them defined within each layer of the structure.As a particular case of the LW model,an Equivalent Single Layer(ESL)formulation is derived too.Different approaches are outlined for the assessment of external forces,as well as for non-conventional constraints.The doubly-curved shell is composed by superimposed generally anisotropic laminae,each of them characterized by an arbitrary orientation.The fundamental governing equations are derived starting from an orthogonal set of principal coordinates.Furthermore,generalized blending functions account for the distortion of the physical domain.The implementation of the fundamental governing equations is performed bymeans of the Generalized Differential Quadrature(GDQ)method,whereas the numerical integrations are computed employing theGeneralized IntegralQuadrature(GIQ)method.In the post-processing phase,an effective procedure is adopted for the reconstruction of stress and strain through-the-thickness distributions based on the exact fulfillment of three-dimensional equilibrium equations.A series of systematic investigations are performed in which the static response of structures with various curvatures and lamination schemes,calculated by the present methodology,have been successfully compared to those ones obtained fromrefined finite element three-dimensional simulations.Even though the present LW approach accounts for a two-dimensional assessment of the structural problem,it is capable of well predicting the three-dimensional response of structures with different characteristics,taking into account a reduced computational cost and pretending to be a valid alternative to widespread numerical implementations.
文摘Based upon the fundamental equations of three dimensional elasticity, the state equation for axisymmetric bending of laminated transversely isotropic circular plate is established and the concentrated force on plate surface is expanded into Fourier_Bessel's series, therefore, an analytical solution for the problem is presented. Every fundamental equation of three dimensional elasticity can be exactly satisfied by the solution and all the independent elastic constants can be taken into account fully, furthermore, the continuity conditions between plies can also be satisfied.
文摘In the paper, the reciprocal theorem is applied to research on the bending of set square with one free oblique edge and two clamped edges under a concentrated load acting at any point. This method is simpler and general.
文摘The reciprocal theorem was applied to solve the bending of the rectangular plates with each edges arbitrary a point supported under a concentrated load, the exact solutions and computation example are given.
文摘In this paper the solution for the bending of corner-supported rectangular plate under concentrated load at any point (α/2, η) of the middle line of the plate is given by means of a conception called modified simply supported edges and the method of superposition. Some numerical example is presented. The solution obtained by this method checks very nicely with what was obtained by G.T. Shih[3] by means of spline finite element method when η=d/2. This shows that this method of solution is satisfactory.
基金The Science Foundation of Ministry of Transport of the People's Republic of China(No.200731822301-7)
文摘Based on the equivalence principle of deflection and stress, the concentrated vehicle load which acts on the center of continuously reinforced concrete pavement (CRCP) is translated into the equivalent half-wave sine load by the Fourier transform. On the basis of this transform and the small deflection theory of elastic thin plates, the deflection and stress formulae of CRCP under the concentrated vehicle load with a hollow foundation are put forward. The sensitivity of parameters is analyzed. The results show that maximum deflection is directly proportional to the concentrated vehicle load and the slab width, and inversely proportional to the lateral bending stiffness and slab thickness. The effects of slab width and thickness are significant with regard to maximum deflection. Maximum stress is directly proportional to the concentrated vehicle load and the slab width as well as inversely proportional to slab thickness. The effect of slab thickness is significant with regard to maximum stress. According to the calculation results, the most effective measure to reduce maximum deflection and stress is to increase slab thickness.
基金Project(51178342)supported by the National Natural Science Foundation of ChinaProject(KLE-TJGE-C1301)supported by the Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education(Tongji University)under the International Cooperation and Exchange Program,China
文摘The boundary between the near and far fields is generally defined as the distance from the vibration source beyond which ground vibrations are mainly dominated by Rayleigh waves. It is closely related to the type of vibration source and the soil properties. Based on the solutions of the Lamb's problem, the boundary at the surface between the near and far fields of ground vibration was investigated for a harmonic vertical concentrated load and an infinite line load at the surface of a visco-elastic half-space. Particularly, the variation of the boundary with the material damping was investigated for both cases. The results indicate that the material damping slightly contributes to the attenuation of vibrations in the near-source region, but significantly reduces the vibrations in the region that is at some distance away from the source. When taking the material damping into consideration, the boundary between the near and far fields tends to move towards the vibration source. Compared with the vibrations caused by a concentrated load, the vibrations induced by an infinite line load can affect a larger range of the surrounding environment, and they attenuate more slowly. This means the boundary between the near field and far field should move fitrther away from the source. Finally, the boundaries are defined in terms of R-wave length (2R) and Poisson ratio of the ground (o). For the case of a point load, the boundary is located at the distance of (5.0-6.0)2R for v≤0.30 and at the distance of (2.0--3.0)2R for v≥0.35. For the case of an infinite line load, the boundary is located at the distance (5.5-6.5)2rt for v≤0.30 and at the distance (2.5--3.5)2R for v≥0.35.
基金supported by the National Nature Science Foundation of China(No.12072007)the Ningbo Nature Science Foundation(No.202003N4018)+1 种基金the Aeronautical Science Foundation of China (No. 20182951014)the Defense Industrial Technology Development Program(No.JCKY2019209C004)
文摘The determination of the dynamic load is one of the indispensable technologies for structure design and health monitoring for aerospace vehicles.However,it is a significant challenge to measure the external excitation directly.By contrast,the technique of dynamic load identification based on the dynamic model and the response information is a feasible access to obtain the dynamic load indirectly.Furthermore,there are multi-source uncertainties which cannot be neglected for complex systems in the load identification process,especially for aerospace vehicles.In this paper,recent developments in the dynamic load identification field for aerospace vehicles considering multi-source uncertainties are reviewed,including the deterministic dynamic load identification and uncertain dynamic load identification.The inversion methods with different principles of concentrated and distributed loads,and the quantification and propagation analysis for multi-source uncertainties are discussed.Eventually,several possibilities remaining to be explored are illustrated in brief.
文摘An experimental study, in which six columns were loaded concentrically toinvestigate the behavior of reinforced normal strength and high strength circular columns underconcentric compression, is described. The concrete strengths of the columns were 30 MPa and 60 MPa.The primary variables considered were the concrete strength and the amount of transversereinforcement. Test results indicate that smaller hoop spacing provides higher column capacity andgreater strength enhancement in a confined concrete core of columns. For the same lateralconfinement, high strength concrete columns develop lower strength enhancement than normal strengthconcrete columns. Both the strength enhancement ratio (f'_(cc) /f'_(co)) and the column capacityratio (P_(test)/P_o) were observed to show linear increase variations with rho_s f_(yt)/f'_c incircular columns.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10772123, 11072160)the Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT0971)the Natural Science Fund for Outstanding People of Hebei Province(Grant No. A2009001624)
文摘An interface crack with a frictionless contact zone at the right crack-tip between two dissimilar magnetoelectroelastic materials under the action of concentrated magnetoelectromechanical loads on the crack faces is considered. The open part of the crack is assumed to be magnetically impermeable and electrically permeable. The Dirichlet-Riemann boundary value problem is formulated and solved analytically. Stress, magnetic induction and electrical displacement intensity factors as well as energy release rate are thus found in analytical forms. Analytical expressions for the contact zone length have been derived. Some numerical results are presented and compared with those based on the other crack surface conditions. It is shown clearly that the location and magnitude of the applied loads could significantly affect the contact zone length, the stress intensity factor and the energy release rate.
基金supported by the Major Projects on Control and Rectification of Water Body Pollution(No.2008ZX07315-001)
文摘To investigate the distribution of pollutant concentrations and pollution loads in stormwater runoff in Chongqing,six typical land use types were selected and studied from August 2009 to September 2011.Statistical analysis on the distribution of pollutant concentrations in all water samples shows that pollutant concentrations fluctuate greatly in rainfall-runoff,and the concentrations of the same pollutant also vary greatly in different rainfall events.In addition,it indicates that the event mean concentrations (EMCs) of total suspended solids (TSS) and chemical oxygen demand (COD) from urban traffic roads (UTR) are significantly higher than those from residential roads (RR),commercial areas (CA),concrete roofs (CR),tile roofs (TRoof),and campus catchment areas (CCA);and the EMCs of total phosphorus (TP) and NH3-N from UTR and CA are 2.35-5 and 3 times of the class-III standard values specified in the Environmental Quality Standards for Surface Water (GB 3838-2002).The EMCs of Fe,Pb and Cd are also much higher than the class-III standard values.The analysis of pollution load producing coefficients (PLPC) reveals that the main pollution source of TSS,COD and TP is UTR.The analysis of correlations between rainfall factors and EMCs/PLPC indicates that rainfall duration is correlated with EMCs/PLPC of TSS for TRoof and TP for UTR,while rainfall intensity is correlated with EMCs/PLPC of TP for both CR and CCA.The results of this study provide a reference for better management of non-point source pollution in urban regions.
文摘In the paper the simplified three-dimensional turbulent diffusion equation ofthe suspended load is deduced by the power series method. The formula on the transversedistribution of the suspended load concentration is obtained, which is tested by a few field data onYangtze River. The simulation results indicate that the calculated data are in primary agreementwith the field data within the allowable error. It is certain value in theory and practice.
基金Ministry of Water Resources,Government of India,No.28/1/2016-R&D/228–245。
文摘Given the challenges of re-creating complex bed load(BL)transport processes in rivers,models are preferred over gathering and examining field data.The highlight of the present research is to develop an approach to determine the ungauged bed load concentration(BLC_(u))utilizing the measured suspended sediment concentration(SSC)and hydraulic variables of the last four decades for the Mahanadi River Basin.This technique employs shear stress and SSC equations for turbulent open channel flow.Besides,the predicted BLC_(u)is correlated with SSC using a power relation to estimate BLC_(u)on the river and tributaries.Eventually,different BL functions(BLF)efficiency is assessed across stations.The model predicted BLC_(u)is comparable with the published data for sandy rivers and falls within±20%.Outliers in hydraulic and sedimentological statistics significantly influence estimating the BL fraction apart from higher relative ratios and catchment geology.The constants of power functions are physically linked to sediment transport configuration,mechanism,and inflow to the stream.The stream power-based BLF best predicts the BL transport,followed by shear stress and unit discharge approaches.The disparity in the estimation of BLC_(u)results from station-specific physical factors,sampling data dispersion,and associated uncertainties.
基金Project supported by the State Key Laboratory of Materials Processing and Die & Mould Technology (No. 2011-P01)the National Natural Science Foundation of China (No. 11072082)
文摘As a natural extension of the micromorphic continuum theory, the linear theory of micromorphic thermoelectroelasticity is developed to characterize the nano-micro scale behavior of thermoelectroelastic materials with remarkable microstructures. After the basic governing equations are given and the reciprocal theorem is deduced, both the generalized variational prin- ciple and the generalized Hamilton principle for mixed boundary-initial value problems of micro- morphic thermoelectroelastodynamics in convolution form are established. Finally, as a primary application, steady state responses of an unbounded homogeneous isotropic micromorphic thermo- electroelastic body to external concentrated loads with mechanical, electric, and thermal origins are analyzed.