The ideal composite electrolyte for the pursued safe and high-energy-density lithium metal batteries(LMBs)is expected to demonstrate peculiarity of superior bulk conductivity,low interfacial resistances,and good compa...The ideal composite electrolyte for the pursued safe and high-energy-density lithium metal batteries(LMBs)is expected to demonstrate peculiarity of superior bulk conductivity,low interfacial resistances,and good compatibility against both Li-metal anode and high-voltage cathode.There is no composite electrolyte to synchronously meet all these requirements yet,and the battery performance is inhibited by the absence of effective electrolyte design.Here we report a unique"concentrated ionogel-in-ceramic"silanization composite electrolyte(SCE)and validate an electrolyte design strategy based on the coupling of high-content silane-conditioning garnet and concentrated ionogel that builds well-percolated Li+transport pathways and tackles the interface issues to respond all the aforementioned requirements.It is revealed that the silane conditioning enables the uniform dispersion of garnet nanoparticles at high content(70 wt%)and forms mixed-lithiophobic-conductive LiF-Li3N solid electrolyte interphase.Notably,the yielding SCE delivers an ultrahigh ionic conductivity of 1.76 X 10^(-3)S cm^(-1)at 25℃,an extremely low Li-metal/electrolyte interfacial area-specific resistance of 13Ωcm^(2),and a distinctly excellent long-term 1200 cycling without any capacity decay in 4.3 V Li‖LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2)(NCM523)quasi-solid-state LMB.This composite electrolyte design strategy can be extended to other quasi-/solid-state LMBs.展开更多
In recent years,the interest in the development of highly concentrated electrolyte solutions for battery applications has increased enormously.Such electrolyte solutions are typically characterized by a low flammabili...In recent years,the interest in the development of highly concentrated electrolyte solutions for battery applications has increased enormously.Such electrolyte solutions are typically characterized by a low flammability,a high thermal and electrochemical stability and by the formation of a stable solid electrolyte interphase(SEI)in contact to electrode materials.However,the classification of concentrated electrolyte solutions in terms of the classical scheme"strong"or"weak"has been controversially discussed in the literature.In this paper,a comprehensive theoretical framework is presented for a more general classification,which is based on a comparison of charge transport and mass transport.By combining the Onsager transport formalism with linear response theory,center-of-mass fluctuations and collective translational dipole fluctuations of the ions in equilibrium are related to transport properties in a lithium-ion battery cell,namely mass transport,charge transport and Li^(+)transport under anion-blocking conditions.The relevance of the classification approach is substantiated by showing that i)it is straightforward to classify highly concentrated electrolytes and that ii)both fast charge transport and fast mass transport are indispensable for achieving fast Li^(+)transport under anion-blocking conditions.展开更多
The primary radiation damage in pure V and TiVTa concentrated solid-solution alloy(CSA)was studied using a molecular dynamics method.We have performed displacement cascade simulations to explore the generation and evo...The primary radiation damage in pure V and TiVTa concentrated solid-solution alloy(CSA)was studied using a molecular dynamics method.We have performed displacement cascade simulations to explore the generation and evolution behavior of irradiation defects.The results demonstrate that the defect accumulation and agglomeration in TiVTa CSA are significantly suppressed compared to pure V.The peak value of Frenkel pairs during cascade collisions in TiVTa CSA is much higher than that in pure V due to the lower formation energy of point defects.Meanwhile,the longer lifetime of the thermal spike relaxation and slow energy dissipation capability of TiVTa CSA can facilitate the recombination of point defects.The defect agglomeration rate in TiVTa CSA is much lower due to the lower binding energy of interstitial clusters and reduced interstitial diffusivity.Furthermore,the occurrence probability of dislocation loops in TiVTa CSA is lower than that in pure V.The reduction in primary radiation damage may enhance the radiation resistance of TiVTa CSA,and the improved radiation tolerance is primarily attributed to the relaxation stage and long-term defect evolution rather than the ballistic stage.These results can provide fundamental insights into irradiation-induced defects evolution in refractory CSAs.展开更多
In this paper, we propose a thermal model of a hybrid photovoltaic/thermal concentration system. Starting from the thermal balance of the model, the equation is solved and simulated with a MATLAB code, considering air...In this paper, we propose a thermal model of a hybrid photovoltaic/thermal concentration system. Starting from the thermal balance of the model, the equation is solved and simulated with a MATLAB code, considering air as the cooling fluid. This enabled us to evaluate some of the parameters influencing the electrical and thermal performance of this device. The results showed that the temperature, thermal efficiency and electrical efficiency delivered depend on the air mass flow rate. The electrical and thermal efficiencies for different values of air mass flow are encouraging, and demonstrate the benefits of cooling photovoltaic cells. The results show that thermal efficiency decreases air flow rate greater than 0.7 kg/s, whatever the value of the light concentration used. The thermal efficiency of the solar cell increases as the light concentration increases, whatever the air flow rate used. For a concentration equal to 30 sun, the thermal efficiency is 0.16 with an air flow rate equal to 0.005 kg/s;the thermal efficiency increases to 0.19 with an air flow rate equal to 0.1 kg/s at the same concentration. An interesting and useful finding was that the proposed numerical model allows the determination of the electrical as well as thermal efficiency of the hybrid CPV/T with air flow as cooling fluid.展开更多
A novel method of roasting high-titanium slag with concentrated sulfuric acid was proposed to prepare titanium dioxide, and the roasting kinetics of titania was studied On the basis of roasting process. The effects of...A novel method of roasting high-titanium slag with concentrated sulfuric acid was proposed to prepare titanium dioxide, and the roasting kinetics of titania was studied On the basis of roasting process. The effects of roasting temperature, particle size, and acid-to-ore mass ratio on the rate of roasting reaction were investigated. The results showed that the roasting reaction is fitted to a shrinking core model. The results of the kinetic experiment and SEM and EDAX analyses proved that the reaction rate of roasting high-titanium slag with concentrated sulfuric acid is controlled by the internal diffusion on the solid product layer. According to the Arrhenius expression, the apparent activation energy of the roasting reaction is 18.94 kJ/mol.展开更多
Based on the equivalence principle of deflection and stress, the concentrated vehicle load which acts on the center of continuously reinforced concrete pavement (CRCP) is translated into the equivalent half-wave sin...Based on the equivalence principle of deflection and stress, the concentrated vehicle load which acts on the center of continuously reinforced concrete pavement (CRCP) is translated into the equivalent half-wave sine load by the Fourier transform. On the basis of this transform and the small deflection theory of elastic thin plates, the deflection and stress formulae of CRCP under the concentrated vehicle load with a hollow foundation are put forward. The sensitivity of parameters is analyzed. The results show that maximum deflection is directly proportional to the concentrated vehicle load and the slab width, and inversely proportional to the lateral bending stiffness and slab thickness. The effects of slab width and thickness are significant with regard to maximum deflection. Maximum stress is directly proportional to the concentrated vehicle load and the slab width as well as inversely proportional to slab thickness. The effect of slab thickness is significant with regard to maximum stress. According to the calculation results, the most effective measure to reduce maximum deflection and stress is to increase slab thickness.展开更多
The central nervous system, information integration center of the body, is mainly composed of neurons and glial cells. The neuron is one of the most basic and important structural and functional units of the central n...The central nervous system, information integration center of the body, is mainly composed of neurons and glial cells. The neuron is one of the most basic and important structural and functional units of the central nervous system, with sensory stimulation and excitation conduction functions. Astrocytes and microglia belong to the glial cell family, which is the main source of cytokines and represents the main defense system of the central nervous system. Nerve cells undergo neurotransmission or gliotransmission, which regulates neuronal activity via the ion channels, receptors, or transporters expressed on nerve cell membranes. Ion channels, composed of large transmembrane proteins, play crucial roles in maintaining nerve cell homeostasis. These channels are also important for control of the membrane potential and in the secretion of neurotransmitters. A variety of cellular functions and life activities, including functional regulation of the central nervous system, the generation and conduction of nerve excitation, the occurrence of receptor potential, heart pulsation, smooth muscle peristalsis, skeletal muscle contraction, and hormone secretion, are closely related to ion channels associated with passive transmembrane transport. Two types of ion channels in the central nervous system, potassium channels and calcium channels, are closely related to various neurological disorders, including Alzheimer's disease, Parkinson's disease, and epilepsy. Accordingly, various drugs that can affect these ion channels have been explored deeply to provide new directions for the treatment of these neurological disorders. In this review, we focus on the functions of potassium and calcium ion channels in different nerve cells and their involvement in neurological disorders such as Parkinson's disease, Alzheimer's disease, depression, epilepsy, autism, and rare disorders. We also describe several clinical drugs that target potassium or calcium channels in nerve cells and could be used to treat these disorders. We concluded that there are few clinical drugs that can improve the pathology these diseases by acting on potassium or calcium ions. Although a few novel ion-channelspecific modulators have been discovered, meaningful therapies have largely not yet been realized. The lack of target-specific drugs, their requirement to cross the blood–brain barrier, and their exact underlying mechanisms all need further attention. This review aims to explain the urgent problems that need research progress and provide comprehensive information aiming to arouse the research community's interest in the development of ion channel-targeting drugs and the identification of new therapeutic targets for that can increase the cure rate of nervous system diseases and reduce the occurrence of adverse reactions in other systems.展开更多
BACKGROUND Ulcerative colitis(UC)is a chronic inflammatory condition requiring continuous treatment and monitoring.There is limited pharmacokinetic data on vedolizumab during maintenance therapy and the effect of thio...BACKGROUND Ulcerative colitis(UC)is a chronic inflammatory condition requiring continuous treatment and monitoring.There is limited pharmacokinetic data on vedolizumab during maintenance therapy and the effect of thiopurines on vedolizumab trough concentrations is unknown.AIM To investigate the exposure-response relationship of vedolizumab and the impact of thiopurine withdrawal in UC patients who have achieved sustained clinical and endoscopic remission during maintenance therapy.METHODS This is a post-hoc analysis of prospective randomized clinical trial(VIEWS)involving UC patients across 8 centers in Australia from 2018 to 2022.Patients in clinical and endoscopic remission were randomized to continue or withdraw thiopurine while receiving vedolizumab.We evaluated vedolizumab serum trough concentrations,presence of anti-vedolizumab antibodies,and clinical outcomes over 48 weeks to assess exposure-response asso-ciation and impact of thiopurine withdrawal.RESULTS There were 62 UC participants with mean age of 43.4 years and 42%were females.All participants received vedolizumab as maintenance therapy with 67.7%withdrew thiopurine.Vedolizumab serum trough concentrations remained stable over 48 weeks regardless of thiopurine use,with no anti-vedolizumab antibodies detected.Pa-tients with clinical remission had higher trough concentrations at week 48.In quartile analysis,a threshold of>11.3μg/mL was associated with sustained clinical remission,showing a sensitivity of 82.4%,specificity of 60.0%,and an area of receiver operating characteristic of 0.71(95%CI:0.49-0.93).Patients discontinuing thiopurine required higher vedolizumab concentrations for achieving remission.CONCLUSION A positive exposure-response relationship between vedolizumab trough concentrations and UC outcomes suggests that monitoring drug levels may be beneficial.While thiopurine did not influence vedolizumab levels,its with-drawal may necessitate higher vedolizumab trough concentrations to maintain remission.展开更多
Assessing the behaviour and concentration of waste pollutants deposited between two parallel plates is essential for effective environmental management.Determining the effectiveness of treatment methods in reducing po...Assessing the behaviour and concentration of waste pollutants deposited between two parallel plates is essential for effective environmental management.Determining the effectiveness of treatment methods in reducing pollution scales is made easier by analysing waste discharge concentrations.The waste discharge concentration analysis is useful for assessing how effectively wastewater treatment techniques reduce pollution levels.This study aims to explore the Casson micropolar fluid flow through two parallel plates with the influence of pollutant concentration and thermophoretic particle deposition.To explore the mass and heat transport features,thermophoretic particle deposition and thermal radiation are considered.The governing equations are transformed into ordinary differential equations with the help of suitable similarity transformations.The Runge-Kutta-Fehlberg’s fourthfifth order technique and shooting procedure are used to solve the reduced set of equations and boundary conditions.The integration of a neural network model based on the Levenberg-Marquardt algorithm serves to improve the accuracy of predictions and optimize the analysis of parameters.Graphical outcomes are displayed to analyze the characteristics of the relevant dimensionless parameters in the current problem.Results reveal that concentration upsurges as the micropolar parameter increases.The concentration reduces with an upsurge in the thermophoretic parameter.An upsurge in the external pollutant source variation and the local pollutant external source parameters enhances mass transport.The surface drag force declines for improved values of porosity and micropolar parameters.展开更多
Concentrated solar power(CSP)plants with thermal energy storage(TES)system are emerging as one kind of the most promising power plants in the future renewable energy system,since they can supply dispatchable and low-c...Concentrated solar power(CSP)plants with thermal energy storage(TES)system are emerging as one kind of the most promising power plants in the future renewable energy system,since they can supply dispatchable and low-cost electricity with abundant but intermittent solar energy.In order to significantly reduce the levelized cost of electricity(LCOE)of the present commercial CSP plants,the next generation CSP technology with higher process temperature and energy efficiency is being developed.The TES system in the next generation CSP plants works with new TES materials at higher temperatures(>565℃)compared to that with the commercial nitrate salt mixtures.This paper reviews recent progressin research and development of the next generation CSP and TES technology.Emphasis is given on theadvanced'TES technology based on molten chloride salt mixtures such as MgCl_(2)/NaCl/KCl which hassimilar thermo-physical properties as the commercial nitrate salt mixtures,higher thermal stability(>800℃),and lower costs(<0.35USD·kg^(-1)).Recent progress in the selection/optimization of chloridesalts,determination of molten chloride salt properties,and corrosion control of construction materials(eg.,alloys)in molten chlorides is reviewed.展开更多
Lithium–sulfur batteries have been regarded as the most promising high-energy electrochemical energy storage device owing to the high energy density, low cost and environmental friendliness. However, traditional lith...Lithium–sulfur batteries have been regarded as the most promising high-energy electrochemical energy storage device owing to the high energy density, low cost and environmental friendliness. However, traditional lithium–sulfur batteries using ether-based electrolytes often suffer from severe safety risks(i.e. combustion). Herein, we demonstrated a novel kind of flame-retardant concentrated electrolyte(6.5 M lithium bis(trifluoromethylsulphonyl)imide/fluoroethylene carbonate) for highly-safe and widetemperature lithium–sulfur batteries. It was found that such concentrated electrolyte showed superior flame retardancy, high lithium-ion transference number(0.69) and steady lithium plating/stripping behavior(2.5 m Ah cm^(-2) over 3000 h). Moreover, lithium–sulfur batteries using this flame-retardant concentrated electrolyte delivered outstanding cycle performance in a wide range of temperatures(-10 °C, 25 °C and 90 °C). This superior battery performance is mainly attributed to the LiF-rich solid electrolyte interphase formed on lithium metal anode, which can effectively suppress the continuous growth of lithium dendrites. Above-mentioned fascinating characteristics would endow this flame-retardant concentrated electrolyte a very promising candidate for highly-safe and wide-temperature lithium–sulfur batteries.展开更多
Lithium metal batteries(LMBs)are highly considered as promising candidates for next-generation energy storage systems.However,routine electrolytes cannot tolerate the high potential at cathodes and low potential at an...Lithium metal batteries(LMBs)are highly considered as promising candidates for next-generation energy storage systems.However,routine electrolytes cannot tolerate the high potential at cathodes and low potential at anodes simultaneously,leading to severe interfacial reactions.Herein,a highly concentrated electrolyte(HCE)region trapped in porous carbon coating layer is adopted to form a stable and highly conductive solid electrolyte interphase(SEI)on Li metal surface.The protected Li metal anode can potentially match the high-voltage cathode in ester electrolytes.Synergistically,this ingenious design promises high-voltage-resistant interfaces at cathodes and stable SEI with abundance of inorganic components at anodes simultaneously in high-voltage LMBs.The feasibility of this interface-regulation strategy is demonstrated in Li|LiFePO_(4) batteries,realizing a lifespan twice as long as the routine cells,with a huge capacity retention enhancement from 46.4%to 88.7%after 100 cycles.This contribution proof-ofconcepts the emerging principles on the formation and regulation of stable electrode/electrolyte interfaces in the cathode and anode simultaneously towards the next-generation high-energy-density batteries.展开更多
BACKGROUND Management of chronic refractory wounds is one of the toughest clinical challenges for surgeons.Because of poor blood supply,less tissue coverage,and easy exposure,the lower leg is a common site for chronic...BACKGROUND Management of chronic refractory wounds is one of the toughest clinical challenges for surgeons.Because of poor blood supply,less tissue coverage,and easy exposure,the lower leg is a common site for chronic refractory wounds.The current therapeutic regimens often lead to prolonged hospital stay and higher healthcare costs.Concentrated growth factor(CGF)is a novel blood extract that contains various growth factors,platelets,and fibrins to promote wound healing process.However,there has been little research reported on the treatment of lower extremity wounds with CGF.CASE SUMMARY A 37-year-old man,without any past medical history,presented an ulcerated chronic wound on his right lower leg.The skin defect exhibited clear boundaries,with a size of 2.0 cm×3.5 cm.The depth of wound was up to the layer of deep fascia.Staphylococcus aureus was detected by bacterial culture.The final diagnosis was right lower extremity ulcers with infection.Cefathiamidine,silver sulfadiazine,and mupirocin cream were applied to control the infection.CGF gel was prepared from the patient’s blood sample,and was used to cover the wound after thorough debridement.The skin wound was successfully healed after three times of CGF treatment.CONCLUSION CGF displays an excellent wound healing promoting effect in patients with lowerextremity chronic refractory wounds.展开更多
AIM To examine the evidence behind the use of concentrated bone marrow aspirate(c BMA) in cartilage, bone, and tendon repair; establish proof of concept for the use of cB MA in these biologic environments; and provide...AIM To examine the evidence behind the use of concentrated bone marrow aspirate(c BMA) in cartilage, bone, and tendon repair; establish proof of concept for the use of cB MA in these biologic environments; and provide the level and quality of evidence substantiating the use of cB MA in the clinical setting.METHODS We conducted a systematic review according to PRISMA guidelines. EMBASE, MEDLINE, and Web of Knowledge databases were screened for the use of cB MA in the repair of cartilage, bone, and tendon repair. We extracted data on tissue type, cB MA preparation, cB MA concentration, study methods, outcomes, and level of evidence and reported the results in tables and text.RESULTS A total of 36 studies met inclusion/exclusion criteria and were included in this review. Thirty-one of 36(86%) studies reported the method of centrifugation and preparation of cB MA with 15(42%) studies reporting either a cell concentration or an increase from baseline. Variation of c BMA application was seen amongst the studies evaluated. Twenty-one of 36(58%) were level of evidence Ⅳ, 12/36(33%) were level of evidence Ⅲ, and 3/36(8%) were level of evidence Ⅱ. Studies evaluated full thickness chondral lesions(7 studies), osteochondral lesions(10 studies), osteoarthritis(5 studies), nonunion or fracture(9 studies), or tendon injuries(5 studies). Significant clinical improvement with the presence of hyaline-like values and lower incidence of fibrocartilage on T2 mapping was found in patients receiving cB MA in the treatment of cartilaginous lesions. Bone consolidation and time to bone union was improved in patients receiving cB MA. Enhanced healingrates, improved quality of the repair surface on ultrasound and magnetic resonance imaging, and a decreased risk of re-rupture was demonstrated in patients receiving cB MA as an adjunctive treatment in tendon repair. CONCLUSION The current literature demonstrates the potential benefits of utilizing c BMA for the repair of cartilaginous lesions, bony defects, and tendon injuries in the clinical setting. This study also demonstrates discrepancies between the literature with regards to various methods of centrifugation, variable cell count concentrations, and lack of standardized outcome measures. Future studies should attempt to examine the integral factors necessary for tissue regeneration and renewal including stem cells, growth factors and a biologic scaffold.展开更多
The Green function on two-phase saturated medium by concentrated force has a broad and important use In seismology, seismic engineering, soil mechanics, geophysics, dynamic foundation theory and so on. According to th...The Green function on two-phase saturated medium by concentrated force has a broad and important use In seismology, seismic engineering, soil mechanics, geophysics, dynamic foundation theory and so on. According to the Green function on two-phase saturated medium by concentrated force in three-dimentional displacement field obtained by Ding Bo-yang et al., it gives out the Green function in two-dimensional displacement field by infinite integral method along x(3)-direction derived by De Hoop and Manolis. The method adopted in the thesis is simpler. The result will be simplified to the boundary element method of dynamic problem.展开更多
This paper aims to present the exact closed form solutions and postbuckling behavior of the beam under a concentrated moment within the span length of beam. Two approaches are used in this paper. The non-linear govern...This paper aims to present the exact closed form solutions and postbuckling behavior of the beam under a concentrated moment within the span length of beam. Two approaches are used in this paper. The non-linear governing differential equations based on elastica theory are derived and solved analytically for the exact closed form solutions in terms of elliptic integral of the first and second kinds. The results are presented in graphical diagram of equilibrium paths, equilibrium configurations and critical loads. For validation of the results from the first approach, the shooting method is employed to solve a set of nonlinear differential equations with boundary conditions. The set of nonlinear governing differential equations are integrated by using Runge-Kutta method fifth order with adaptive step size scheme. The error norms of the end conditions are minimized within prescribed tolerance (10^-5). The results from both approaches are in good agreement. From the results, it is found that the stability of this type of beam exhibits both stable and unstable configurations. The limit load point existed. The roller support can move through the hinged support in some cases of β and leads to the more complex of the configuration shapes of the beam.展开更多
The surface waves generated by unsteady concentrated disturbances in an initially quiescent fluid of infinite depth with an inertial surface are analytically investigated for two- and three-dimensional cases. The flui...The surface waves generated by unsteady concentrated disturbances in an initially quiescent fluid of infinite depth with an inertial surface are analytically investigated for two- and three-dimensional cases. The fluid is assumed to be inviscid, incompressible and homogenous. The inertial surface represents the effect of a thin uniform distribution of non-interacting floating matter. Four types of unsteady concentrated disturbances and two kinds of initial values are considered, namely an instantaneous/oscillating mass source immersed in the fluid, an instantaneous/oscillating impulse on the surface, an initial impulse on the surface of the fluid, and an initial displacement of the surface. The linearized initial-boundary-value problem is formulated within the framework of potential flow. The solutions in integral form for the surface elevation are obtained by means of a joint Laplace-Fourier transform. The asymptotic representations of the wave motion for large time with a fixed distance- to-time ratio are derived by using the method of stationary phase. The effect of the presence of an inertial surface on the wave motion is analyzed. It is found that the wavelengths of the transient dispersive waves increase while those of the steady-state progressive waves decrease. All the wave amplitudes decrease in comparison with those of conventional free-surface waves. The explicit expressions for the freesurface gravity waves can readily be recovered by the present results as the inertial surface disappears.展开更多
An integral constitutive equation and a set of material functions for describing the strain history of polymer melts were formulated in terms of the Cauchy-Green and Finger tensors. A simple memory function and the de...An integral constitutive equation and a set of material functions for describing the strain history of polymer melts were formulated in terms of the Cauchy-Green and Finger tensors. A simple memory function and the dependence of ηo and τt on M3.4 were derived from the theory of non-linear viscoelasticity with constraints of entanglements for polymer melts and substituted into the Oldroye-Walters-Fredickson constitutive equation. An integral constitutive equation for polymer melts was consequently obtained. Some material functions of the constitutive equation related to certain 'test flow' are examined as follows : (1) simple steady shear flow; (2) steady elongation flow; (3) small-amplitude oscillatory shear flow; (4) stress growth upon the inception of steady shear elongation flow; (5) stress relaxation (modulus and compllance). These theoretical relations for simple steady shear flow were compared with experimental data from our laboratory and references for various polymer melts and concentrated solutions. A good agreement between the theory and experiment was achieved.展开更多
A Zr-Gd alloy with neutron poisoning properties and resistance to boiling concentrated HNO3 corrosion was developed based on a corrosion-resistant Zr-702 alloy to meet the demand for neutron shielding in the closed-lo...A Zr-Gd alloy with neutron poisoning properties and resistance to boiling concentrated HNO3 corrosion was developed based on a corrosion-resistant Zr-702 alloy to meet the demand for neutron shielding in the closed-loop treatment of spent fuel and the nuclear chemical industry.In this study,1 wt.%,3 wt.%,5 wt.%,7 wt.%,and 9 wt.%Zr-Gd alloys were designed and fabricated with Zr-702 as the control element.The electrochemical behavior of the Zr-Gd alloys in boiling concentrated HNO3 was investigated,and the neutron shielding effect on plate thickness and Gd content was simulated.The experimental results demonstrate that the corrosion resistance of the alloy decreased slightly before~7-9 wt.%with increasing Gd content;this is the inflection point of its corrosion resistance.The alloy uniformly dissolved the Gd content that could not be dissolved in the Zr lattice,resulting in numerous micropores on the passivation coating,which deteriorated and accelerated the corrosion rate.The MCNP simulation demonstrated that when the Gd content was increased to 5 wt.%,a 2-mm-thick plate can shield 99.9%neutrons;an alloy with a Gd content≥7 wt.%required only a 1-mm-thick plate,thereby showing that the addition of Gd provides an excellent neutron poisoning effect.Thus,the corrosion resistance and neutron shielding performance of the Zr-Gd alloy can meet the harsh service requirements of the nuclear industry.展开更多
To quantify the impacts of native vegetation on the spatial and temporal variations in hydraulic properties of bank gully concentrated flows,a series of in situ flume experiments in the bank gully were performed at th...To quantify the impacts of native vegetation on the spatial and temporal variations in hydraulic properties of bank gully concentrated flows,a series of in situ flume experiments in the bank gully were performed at the Yuanmou Gully Erosion and Collapse Experimental Station in the dry-hot valley region of the Jinsha River,Southwest China.This experiment involved upstream catchment areas withone-and two-year native grass(Heteropogon contortus)and bare land drained to bare gully headcuts,i.e.,Gullies 1,2 and 3.In Gully 4,Heteropogon contortus and Agave sisalana were planted in the upstream catchment area and gully bed,respectively.Among these experiments,the sediment concentration in runoff in Gully 3 was the highest and that in Gully 2 was the lowest,clearly indicating that the sediment concentration in runoff obviously decreased and the deposition of sediment obviously increased as the vegetation cover increased.The concentrated flows were turbulent in response to the flow discharge.The concentrated flows in the gully zones with native grass and bare land were sub-and supercritical,respectively.The flow rate and shear stress in Gully 3 upstream catchment area were highest among the four upstream catchment areas,while the flow rate and shear stress in the gully bed of Gully 4 were lowest among the four gully beds,indicating that native grass notably decreased the bank gully flow rate and shear stress.The Darcy–Weisbach friction factor(resistance f)and flow energy consumption in the gully bed of Gully 4 were notably higher than those in the other three gully beds,clearly indicating that native grass increased the bank gully surface resistance and flow energy consumption.The Reynolds number(Re),flow rate,shear stress,resistance f,and flow energy consumption in the gully beds and upstream areas increased over time,while the sediment concentration in runoff and Froude number(Fr)decreased.Overall,increasing vegetation cover in upstream catchment areas and downstream gully beds of the bank gully is essential for gully erosion mitigation.展开更多
基金supported by the Key Program for International Science and Technology Cooperation Projects of the Ministry of Science and Technology of China(2021YFE0109700)Technical Innovation and Application Development Project of Chongqing(Z20230084)+7 种基金Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure(SKL202106SIC)Chinese National Natural Science Fund(11632004,U1864208)National Science and Technology Major Project(2017-VII-0011-0106)Science and Technology Planning Project of Tianjin(20ZYJDJC00030)Key Program of Research and Development of Hebei Province(202030507040009)Fund for Innovative Research Groups of Natural Science Foundation of Hebei Province(A2020202002)Natural Science Foundation of Chongqing(cstc2021jcyjmsxm X0241)Key Project of Natural Science Foundation of Tianjin(S20ZDF077)
文摘The ideal composite electrolyte for the pursued safe and high-energy-density lithium metal batteries(LMBs)is expected to demonstrate peculiarity of superior bulk conductivity,low interfacial resistances,and good compatibility against both Li-metal anode and high-voltage cathode.There is no composite electrolyte to synchronously meet all these requirements yet,and the battery performance is inhibited by the absence of effective electrolyte design.Here we report a unique"concentrated ionogel-in-ceramic"silanization composite electrolyte(SCE)and validate an electrolyte design strategy based on the coupling of high-content silane-conditioning garnet and concentrated ionogel that builds well-percolated Li+transport pathways and tackles the interface issues to respond all the aforementioned requirements.It is revealed that the silane conditioning enables the uniform dispersion of garnet nanoparticles at high content(70 wt%)and forms mixed-lithiophobic-conductive LiF-Li3N solid electrolyte interphase.Notably,the yielding SCE delivers an ultrahigh ionic conductivity of 1.76 X 10^(-3)S cm^(-1)at 25℃,an extremely low Li-metal/electrolyte interfacial area-specific resistance of 13Ωcm^(2),and a distinctly excellent long-term 1200 cycling without any capacity decay in 4.3 V Li‖LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2)(NCM523)quasi-solid-state LMB.This composite electrolyte design strategy can be extended to other quasi-/solid-state LMBs.
文摘In recent years,the interest in the development of highly concentrated electrolyte solutions for battery applications has increased enormously.Such electrolyte solutions are typically characterized by a low flammability,a high thermal and electrochemical stability and by the formation of a stable solid electrolyte interphase(SEI)in contact to electrode materials.However,the classification of concentrated electrolyte solutions in terms of the classical scheme"strong"or"weak"has been controversially discussed in the literature.In this paper,a comprehensive theoretical framework is presented for a more general classification,which is based on a comparison of charge transport and mass transport.By combining the Onsager transport formalism with linear response theory,center-of-mass fluctuations and collective translational dipole fluctuations of the ions in equilibrium are related to transport properties in a lithium-ion battery cell,namely mass transport,charge transport and Li^(+)transport under anion-blocking conditions.The relevance of the classification approach is substantiated by showing that i)it is straightforward to classify highly concentrated electrolytes and that ii)both fast charge transport and fast mass transport are indispensable for achieving fast Li^(+)transport under anion-blocking conditions.
基金Project supported by the Dean’s Fund of China Institute of Atomic Energy(Grant No.219256)the CNNC Science Fund for Talented Young Scholars.
文摘The primary radiation damage in pure V and TiVTa concentrated solid-solution alloy(CSA)was studied using a molecular dynamics method.We have performed displacement cascade simulations to explore the generation and evolution behavior of irradiation defects.The results demonstrate that the defect accumulation and agglomeration in TiVTa CSA are significantly suppressed compared to pure V.The peak value of Frenkel pairs during cascade collisions in TiVTa CSA is much higher than that in pure V due to the lower formation energy of point defects.Meanwhile,the longer lifetime of the thermal spike relaxation and slow energy dissipation capability of TiVTa CSA can facilitate the recombination of point defects.The defect agglomeration rate in TiVTa CSA is much lower due to the lower binding energy of interstitial clusters and reduced interstitial diffusivity.Furthermore,the occurrence probability of dislocation loops in TiVTa CSA is lower than that in pure V.The reduction in primary radiation damage may enhance the radiation resistance of TiVTa CSA,and the improved radiation tolerance is primarily attributed to the relaxation stage and long-term defect evolution rather than the ballistic stage.These results can provide fundamental insights into irradiation-induced defects evolution in refractory CSAs.
文摘In this paper, we propose a thermal model of a hybrid photovoltaic/thermal concentration system. Starting from the thermal balance of the model, the equation is solved and simulated with a MATLAB code, considering air as the cooling fluid. This enabled us to evaluate some of the parameters influencing the electrical and thermal performance of this device. The results showed that the temperature, thermal efficiency and electrical efficiency delivered depend on the air mass flow rate. The electrical and thermal efficiencies for different values of air mass flow are encouraging, and demonstrate the benefits of cooling photovoltaic cells. The results show that thermal efficiency decreases air flow rate greater than 0.7 kg/s, whatever the value of the light concentration used. The thermal efficiency of the solar cell increases as the light concentration increases, whatever the air flow rate used. For a concentration equal to 30 sun, the thermal efficiency is 0.16 with an air flow rate equal to 0.005 kg/s;the thermal efficiency increases to 0.19 with an air flow rate equal to 0.1 kg/s at the same concentration. An interesting and useful finding was that the proposed numerical model allows the determination of the electrical as well as thermal efficiency of the hybrid CPV/T with air flow as cooling fluid.
基金Project(2007CB613603)supported by the National Basic Research Program of China
文摘A novel method of roasting high-titanium slag with concentrated sulfuric acid was proposed to prepare titanium dioxide, and the roasting kinetics of titania was studied On the basis of roasting process. The effects of roasting temperature, particle size, and acid-to-ore mass ratio on the rate of roasting reaction were investigated. The results showed that the roasting reaction is fitted to a shrinking core model. The results of the kinetic experiment and SEM and EDAX analyses proved that the reaction rate of roasting high-titanium slag with concentrated sulfuric acid is controlled by the internal diffusion on the solid product layer. According to the Arrhenius expression, the apparent activation energy of the roasting reaction is 18.94 kJ/mol.
基金The Science Foundation of Ministry of Transport of the People's Republic of China(No.200731822301-7)
文摘Based on the equivalence principle of deflection and stress, the concentrated vehicle load which acts on the center of continuously reinforced concrete pavement (CRCP) is translated into the equivalent half-wave sine load by the Fourier transform. On the basis of this transform and the small deflection theory of elastic thin plates, the deflection and stress formulae of CRCP under the concentrated vehicle load with a hollow foundation are put forward. The sensitivity of parameters is analyzed. The results show that maximum deflection is directly proportional to the concentrated vehicle load and the slab width, and inversely proportional to the lateral bending stiffness and slab thickness. The effects of slab width and thickness are significant with regard to maximum deflection. Maximum stress is directly proportional to the concentrated vehicle load and the slab width as well as inversely proportional to slab thickness. The effect of slab thickness is significant with regard to maximum stress. According to the calculation results, the most effective measure to reduce maximum deflection and stress is to increase slab thickness.
基金supported by the National Natural Science Foundation of China,Nos.81901098(to TC),82201668(to HL)Fujian Provincial Health Technology Project,No.2021QNA072(to HL)。
文摘The central nervous system, information integration center of the body, is mainly composed of neurons and glial cells. The neuron is one of the most basic and important structural and functional units of the central nervous system, with sensory stimulation and excitation conduction functions. Astrocytes and microglia belong to the glial cell family, which is the main source of cytokines and represents the main defense system of the central nervous system. Nerve cells undergo neurotransmission or gliotransmission, which regulates neuronal activity via the ion channels, receptors, or transporters expressed on nerve cell membranes. Ion channels, composed of large transmembrane proteins, play crucial roles in maintaining nerve cell homeostasis. These channels are also important for control of the membrane potential and in the secretion of neurotransmitters. A variety of cellular functions and life activities, including functional regulation of the central nervous system, the generation and conduction of nerve excitation, the occurrence of receptor potential, heart pulsation, smooth muscle peristalsis, skeletal muscle contraction, and hormone secretion, are closely related to ion channels associated with passive transmembrane transport. Two types of ion channels in the central nervous system, potassium channels and calcium channels, are closely related to various neurological disorders, including Alzheimer's disease, Parkinson's disease, and epilepsy. Accordingly, various drugs that can affect these ion channels have been explored deeply to provide new directions for the treatment of these neurological disorders. In this review, we focus on the functions of potassium and calcium ion channels in different nerve cells and their involvement in neurological disorders such as Parkinson's disease, Alzheimer's disease, depression, epilepsy, autism, and rare disorders. We also describe several clinical drugs that target potassium or calcium channels in nerve cells and could be used to treat these disorders. We concluded that there are few clinical drugs that can improve the pathology these diseases by acting on potassium or calcium ions. Although a few novel ion-channelspecific modulators have been discovered, meaningful therapies have largely not yet been realized. The lack of target-specific drugs, their requirement to cross the blood–brain barrier, and their exact underlying mechanisms all need further attention. This review aims to explain the urgent problems that need research progress and provide comprehensive information aiming to arouse the research community's interest in the development of ion channel-targeting drugs and the identification of new therapeutic targets for that can increase the cure rate of nervous system diseases and reduce the occurrence of adverse reactions in other systems.
基金Supported by Takeda Australia,No.IISR-2016-101883.
文摘BACKGROUND Ulcerative colitis(UC)is a chronic inflammatory condition requiring continuous treatment and monitoring.There is limited pharmacokinetic data on vedolizumab during maintenance therapy and the effect of thiopurines on vedolizumab trough concentrations is unknown.AIM To investigate the exposure-response relationship of vedolizumab and the impact of thiopurine withdrawal in UC patients who have achieved sustained clinical and endoscopic remission during maintenance therapy.METHODS This is a post-hoc analysis of prospective randomized clinical trial(VIEWS)involving UC patients across 8 centers in Australia from 2018 to 2022.Patients in clinical and endoscopic remission were randomized to continue or withdraw thiopurine while receiving vedolizumab.We evaluated vedolizumab serum trough concentrations,presence of anti-vedolizumab antibodies,and clinical outcomes over 48 weeks to assess exposure-response asso-ciation and impact of thiopurine withdrawal.RESULTS There were 62 UC participants with mean age of 43.4 years and 42%were females.All participants received vedolizumab as maintenance therapy with 67.7%withdrew thiopurine.Vedolizumab serum trough concentrations remained stable over 48 weeks regardless of thiopurine use,with no anti-vedolizumab antibodies detected.Pa-tients with clinical remission had higher trough concentrations at week 48.In quartile analysis,a threshold of>11.3μg/mL was associated with sustained clinical remission,showing a sensitivity of 82.4%,specificity of 60.0%,and an area of receiver operating characteristic of 0.71(95%CI:0.49-0.93).Patients discontinuing thiopurine required higher vedolizumab concentrations for achieving remission.CONCLUSION A positive exposure-response relationship between vedolizumab trough concentrations and UC outcomes suggests that monitoring drug levels may be beneficial.While thiopurine did not influence vedolizumab levels,its with-drawal may necessitate higher vedolizumab trough concentrations to maintain remission.
文摘Assessing the behaviour and concentration of waste pollutants deposited between two parallel plates is essential for effective environmental management.Determining the effectiveness of treatment methods in reducing pollution scales is made easier by analysing waste discharge concentrations.The waste discharge concentration analysis is useful for assessing how effectively wastewater treatment techniques reduce pollution levels.This study aims to explore the Casson micropolar fluid flow through two parallel plates with the influence of pollutant concentration and thermophoretic particle deposition.To explore the mass and heat transport features,thermophoretic particle deposition and thermal radiation are considered.The governing equations are transformed into ordinary differential equations with the help of suitable similarity transformations.The Runge-Kutta-Fehlberg’s fourthfifth order technique and shooting procedure are used to solve the reduced set of equations and boundary conditions.The integration of a neural network model based on the Levenberg-Marquardt algorithm serves to improve the accuracy of predictions and optimize the analysis of parameters.Graphical outcomes are displayed to analyze the characteristics of the relevant dimensionless parameters in the current problem.Results reveal that concentration upsurges as the micropolar parameter increases.The concentration reduces with an upsurge in the thermophoretic parameter.An upsurge in the external pollutant source variation and the local pollutant external source parameters enhances mass transport.The surface drag force declines for improved values of porosity and micropolar parameters.
文摘Concentrated solar power(CSP)plants with thermal energy storage(TES)system are emerging as one kind of the most promising power plants in the future renewable energy system,since they can supply dispatchable and low-cost electricity with abundant but intermittent solar energy.In order to significantly reduce the levelized cost of electricity(LCOE)of the present commercial CSP plants,the next generation CSP technology with higher process temperature and energy efficiency is being developed.The TES system in the next generation CSP plants works with new TES materials at higher temperatures(>565℃)compared to that with the commercial nitrate salt mixtures.This paper reviews recent progressin research and development of the next generation CSP and TES technology.Emphasis is given on theadvanced'TES technology based on molten chloride salt mixtures such as MgCl_(2)/NaCl/KCl which hassimilar thermo-physical properties as the commercial nitrate salt mixtures,higher thermal stability(>800℃),and lower costs(<0.35USD·kg^(-1)).Recent progress in the selection/optimization of chloridesalts,determination of molten chloride salt properties,and corrosion control of construction materials(eg.,alloys)in molten chlorides is reviewed.
基金financially supported by the National Key R&D Program of China (Grant No. 2017YFE0127600)the National Natural Science Foundation of China (Nos. 51703236 and U1706229)+1 种基金the National Science Fund for Distinguished Young Scholars (No. 51625204)Key Scientific and Technological Innovation Project of Shandong (No. 2017CXZC0505)。
文摘Lithium–sulfur batteries have been regarded as the most promising high-energy electrochemical energy storage device owing to the high energy density, low cost and environmental friendliness. However, traditional lithium–sulfur batteries using ether-based electrolytes often suffer from severe safety risks(i.e. combustion). Herein, we demonstrated a novel kind of flame-retardant concentrated electrolyte(6.5 M lithium bis(trifluoromethylsulphonyl)imide/fluoroethylene carbonate) for highly-safe and widetemperature lithium–sulfur batteries. It was found that such concentrated electrolyte showed superior flame retardancy, high lithium-ion transference number(0.69) and steady lithium plating/stripping behavior(2.5 m Ah cm^(-2) over 3000 h). Moreover, lithium–sulfur batteries using this flame-retardant concentrated electrolyte delivered outstanding cycle performance in a wide range of temperatures(-10 °C, 25 °C and 90 °C). This superior battery performance is mainly attributed to the LiF-rich solid electrolyte interphase formed on lithium metal anode, which can effectively suppress the continuous growth of lithium dendrites. Above-mentioned fascinating characteristics would endow this flame-retardant concentrated electrolyte a very promising candidate for highly-safe and wide-temperature lithium–sulfur batteries.
基金supported by Beijing Natural Science Foundation(JQ20004)National Natural Science Foundation of China(21805161,21808121,and U1932220)+1 种基金China Post-Doctoral Science Foundation(2020M670155 and 2020T130054)Scientific and Technological Key Project of Shanxi Province(20191102003)。
文摘Lithium metal batteries(LMBs)are highly considered as promising candidates for next-generation energy storage systems.However,routine electrolytes cannot tolerate the high potential at cathodes and low potential at anodes simultaneously,leading to severe interfacial reactions.Herein,a highly concentrated electrolyte(HCE)region trapped in porous carbon coating layer is adopted to form a stable and highly conductive solid electrolyte interphase(SEI)on Li metal surface.The protected Li metal anode can potentially match the high-voltage cathode in ester electrolytes.Synergistically,this ingenious design promises high-voltage-resistant interfaces at cathodes and stable SEI with abundance of inorganic components at anodes simultaneously in high-voltage LMBs.The feasibility of this interface-regulation strategy is demonstrated in Li|LiFePO_(4) batteries,realizing a lifespan twice as long as the routine cells,with a huge capacity retention enhancement from 46.4%to 88.7%after 100 cycles.This contribution proof-ofconcepts the emerging principles on the formation and regulation of stable electrode/electrolyte interfaces in the cathode and anode simultaneously towards the next-generation high-energy-density batteries.
基金Supported by Shenzhen Longhua District Science and Innovation Bureau for Key Laboratory Construction,No.20160919A0410022Shenzhen Longhua District Science and Innovation Bureau Fund for Medical Institutions,No.2020038 and No.2017136。
文摘BACKGROUND Management of chronic refractory wounds is one of the toughest clinical challenges for surgeons.Because of poor blood supply,less tissue coverage,and easy exposure,the lower leg is a common site for chronic refractory wounds.The current therapeutic regimens often lead to prolonged hospital stay and higher healthcare costs.Concentrated growth factor(CGF)is a novel blood extract that contains various growth factors,platelets,and fibrins to promote wound healing process.However,there has been little research reported on the treatment of lower extremity wounds with CGF.CASE SUMMARY A 37-year-old man,without any past medical history,presented an ulcerated chronic wound on his right lower leg.The skin defect exhibited clear boundaries,with a size of 2.0 cm×3.5 cm.The depth of wound was up to the layer of deep fascia.Staphylococcus aureus was detected by bacterial culture.The final diagnosis was right lower extremity ulcers with infection.Cefathiamidine,silver sulfadiazine,and mupirocin cream were applied to control the infection.CGF gel was prepared from the patient’s blood sample,and was used to cover the wound after thorough debridement.The skin wound was successfully healed after three times of CGF treatment.CONCLUSION CGF displays an excellent wound healing promoting effect in patients with lowerextremity chronic refractory wounds.
文摘AIM To examine the evidence behind the use of concentrated bone marrow aspirate(c BMA) in cartilage, bone, and tendon repair; establish proof of concept for the use of cB MA in these biologic environments; and provide the level and quality of evidence substantiating the use of cB MA in the clinical setting.METHODS We conducted a systematic review according to PRISMA guidelines. EMBASE, MEDLINE, and Web of Knowledge databases were screened for the use of cB MA in the repair of cartilage, bone, and tendon repair. We extracted data on tissue type, cB MA preparation, cB MA concentration, study methods, outcomes, and level of evidence and reported the results in tables and text.RESULTS A total of 36 studies met inclusion/exclusion criteria and were included in this review. Thirty-one of 36(86%) studies reported the method of centrifugation and preparation of cB MA with 15(42%) studies reporting either a cell concentration or an increase from baseline. Variation of c BMA application was seen amongst the studies evaluated. Twenty-one of 36(58%) were level of evidence Ⅳ, 12/36(33%) were level of evidence Ⅲ, and 3/36(8%) were level of evidence Ⅱ. Studies evaluated full thickness chondral lesions(7 studies), osteochondral lesions(10 studies), osteoarthritis(5 studies), nonunion or fracture(9 studies), or tendon injuries(5 studies). Significant clinical improvement with the presence of hyaline-like values and lower incidence of fibrocartilage on T2 mapping was found in patients receiving cB MA in the treatment of cartilaginous lesions. Bone consolidation and time to bone union was improved in patients receiving cB MA. Enhanced healingrates, improved quality of the repair surface on ultrasound and magnetic resonance imaging, and a decreased risk of re-rupture was demonstrated in patients receiving cB MA as an adjunctive treatment in tendon repair. CONCLUSION The current literature demonstrates the potential benefits of utilizing c BMA for the repair of cartilaginous lesions, bony defects, and tendon injuries in the clinical setting. This study also demonstrates discrepancies between the literature with regards to various methods of centrifugation, variable cell count concentrations, and lack of standardized outcome measures. Future studies should attempt to examine the integral factors necessary for tissue regeneration and renewal including stem cells, growth factors and a biologic scaffold.
文摘The Green function on two-phase saturated medium by concentrated force has a broad and important use In seismology, seismic engineering, soil mechanics, geophysics, dynamic foundation theory and so on. According to the Green function on two-phase saturated medium by concentrated force in three-dimentional displacement field obtained by Ding Bo-yang et al., it gives out the Green function in two-dimensional displacement field by infinite integral method along x(3)-direction derived by De Hoop and Manolis. The method adopted in the thesis is simpler. The result will be simplified to the boundary element method of dynamic problem.
文摘This paper aims to present the exact closed form solutions and postbuckling behavior of the beam under a concentrated moment within the span length of beam. Two approaches are used in this paper. The non-linear governing differential equations based on elastica theory are derived and solved analytically for the exact closed form solutions in terms of elliptic integral of the first and second kinds. The results are presented in graphical diagram of equilibrium paths, equilibrium configurations and critical loads. For validation of the results from the first approach, the shooting method is employed to solve a set of nonlinear differential equations with boundary conditions. The set of nonlinear governing differential equations are integrated by using Runge-Kutta method fifth order with adaptive step size scheme. The error norms of the end conditions are minimized within prescribed tolerance (10^-5). The results from both approaches are in good agreement. From the results, it is found that the stability of this type of beam exhibits both stable and unstable configurations. The limit load point existed. The roller support can move through the hinged support in some cases of β and leads to the more complex of the configuration shapes of the beam.
基金the National Natural Science Foundation of China(10602032)the Shanghai Rising-Star Program(07QA14022)the Shanghai Leading Academic Discipline Project(Y0103)
文摘The surface waves generated by unsteady concentrated disturbances in an initially quiescent fluid of infinite depth with an inertial surface are analytically investigated for two- and three-dimensional cases. The fluid is assumed to be inviscid, incompressible and homogenous. The inertial surface represents the effect of a thin uniform distribution of non-interacting floating matter. Four types of unsteady concentrated disturbances and two kinds of initial values are considered, namely an instantaneous/oscillating mass source immersed in the fluid, an instantaneous/oscillating impulse on the surface, an initial impulse on the surface of the fluid, and an initial displacement of the surface. The linearized initial-boundary-value problem is formulated within the framework of potential flow. The solutions in integral form for the surface elevation are obtained by means of a joint Laplace-Fourier transform. The asymptotic representations of the wave motion for large time with a fixed distance- to-time ratio are derived by using the method of stationary phase. The effect of the presence of an inertial surface on the wave motion is analyzed. It is found that the wavelengths of the transient dispersive waves increase while those of the steady-state progressive waves decrease. All the wave amplitudes decrease in comparison with those of conventional free-surface waves. The explicit expressions for the freesurface gravity waves can readily be recovered by the present results as the inertial surface disappears.
文摘An integral constitutive equation and a set of material functions for describing the strain history of polymer melts were formulated in terms of the Cauchy-Green and Finger tensors. A simple memory function and the dependence of ηo and τt on M3.4 were derived from the theory of non-linear viscoelasticity with constraints of entanglements for polymer melts and substituted into the Oldroye-Walters-Fredickson constitutive equation. An integral constitutive equation for polymer melts was consequently obtained. Some material functions of the constitutive equation related to certain 'test flow' are examined as follows : (1) simple steady shear flow; (2) steady elongation flow; (3) small-amplitude oscillatory shear flow; (4) stress growth upon the inception of steady shear elongation flow; (5) stress relaxation (modulus and compllance). These theoretical relations for simple steady shear flow were compared with experimental data from our laboratory and references for various polymer melts and concentrated solutions. A good agreement between the theory and experiment was achieved.
基金supported by the National Natural Science Foundation of China (Nos.52201021 and 52101099)Key Research and Development Program of Shaanxi (2021GY-249,2021GY-233)+1 种基金Natural Science Basic Research Program of Shaanxi (No.2020JC-50)Shaanxi Provincial Natural Science Youth Foundation (2022JQ-410).
文摘A Zr-Gd alloy with neutron poisoning properties and resistance to boiling concentrated HNO3 corrosion was developed based on a corrosion-resistant Zr-702 alloy to meet the demand for neutron shielding in the closed-loop treatment of spent fuel and the nuclear chemical industry.In this study,1 wt.%,3 wt.%,5 wt.%,7 wt.%,and 9 wt.%Zr-Gd alloys were designed and fabricated with Zr-702 as the control element.The electrochemical behavior of the Zr-Gd alloys in boiling concentrated HNO3 was investigated,and the neutron shielding effect on plate thickness and Gd content was simulated.The experimental results demonstrate that the corrosion resistance of the alloy decreased slightly before~7-9 wt.%with increasing Gd content;this is the inflection point of its corrosion resistance.The alloy uniformly dissolved the Gd content that could not be dissolved in the Zr lattice,resulting in numerous micropores on the passivation coating,which deteriorated and accelerated the corrosion rate.The MCNP simulation demonstrated that when the Gd content was increased to 5 wt.%,a 2-mm-thick plate can shield 99.9%neutrons;an alloy with a Gd content≥7 wt.%required only a 1-mm-thick plate,thereby showing that the addition of Gd provides an excellent neutron poisoning effect.Thus,the corrosion resistance and neutron shielding performance of the Zr-Gd alloy can meet the harsh service requirements of the nuclear industry.
基金supported by the National Key Research and Development Program of China(2017YFC0505102)the Second Tibetan Plateau Scientific Expedition and Research Program(STEP,No.2019QZKK0307)the Major Science and Technology Program for Water Pollution Control and Treatment(2017ZX07101-001)。
文摘To quantify the impacts of native vegetation on the spatial and temporal variations in hydraulic properties of bank gully concentrated flows,a series of in situ flume experiments in the bank gully were performed at the Yuanmou Gully Erosion and Collapse Experimental Station in the dry-hot valley region of the Jinsha River,Southwest China.This experiment involved upstream catchment areas withone-and two-year native grass(Heteropogon contortus)and bare land drained to bare gully headcuts,i.e.,Gullies 1,2 and 3.In Gully 4,Heteropogon contortus and Agave sisalana were planted in the upstream catchment area and gully bed,respectively.Among these experiments,the sediment concentration in runoff in Gully 3 was the highest and that in Gully 2 was the lowest,clearly indicating that the sediment concentration in runoff obviously decreased and the deposition of sediment obviously increased as the vegetation cover increased.The concentrated flows were turbulent in response to the flow discharge.The concentrated flows in the gully zones with native grass and bare land were sub-and supercritical,respectively.The flow rate and shear stress in Gully 3 upstream catchment area were highest among the four upstream catchment areas,while the flow rate and shear stress in the gully bed of Gully 4 were lowest among the four gully beds,indicating that native grass notably decreased the bank gully flow rate and shear stress.The Darcy–Weisbach friction factor(resistance f)and flow energy consumption in the gully bed of Gully 4 were notably higher than those in the other three gully beds,clearly indicating that native grass increased the bank gully surface resistance and flow energy consumption.The Reynolds number(Re),flow rate,shear stress,resistance f,and flow energy consumption in the gully beds and upstream areas increased over time,while the sediment concentration in runoff and Froude number(Fr)decreased.Overall,increasing vegetation cover in upstream catchment areas and downstream gully beds of the bank gully is essential for gully erosion mitigation.