In a binary granular system composed of two types of particles with different granule sizes and the same density,particle sorting occurs easily during the flow process.The segregation pattern structure is mainly affec...In a binary granular system composed of two types of particles with different granule sizes and the same density,particle sorting occurs easily during the flow process.The segregation pattern structure is mainly affected by the granular velocity and granular concentration in the flow layer.This paper reports on the experimental velocity and concentration measurement results for spherical particles in a quasi-two-dimensional rotating drum.The relationship between the granular velocity along the depth direction of the flow layer and granular concentration was established to characterize structures with different degrees of segregation.The corresponding relationships between the granular velocity and concentration and the segregation pattern were further analyzed to improve the theoretical models of segregation(convection-diffusion model and continuous flow model)and provide a reference for granular segregation control in the production process.展开更多
基金supported by the National Natural Science Foundation of China (grant Nos.11972212,12072200,12002213)the Natural Science Foundation of Shanghai (grant No.20ZR1438800).
文摘In a binary granular system composed of two types of particles with different granule sizes and the same density,particle sorting occurs easily during the flow process.The segregation pattern structure is mainly affected by the granular velocity and granular concentration in the flow layer.This paper reports on the experimental velocity and concentration measurement results for spherical particles in a quasi-two-dimensional rotating drum.The relationship between the granular velocity along the depth direction of the flow layer and granular concentration was established to characterize structures with different degrees of segregation.The corresponding relationships between the granular velocity and concentration and the segregation pattern were further analyzed to improve the theoretical models of segregation(convection-diffusion model and continuous flow model)and provide a reference for granular segregation control in the production process.