Diffractive optical elements(DOEs) with spectrum separation and beam concentration(SSBC) functions have important applications in solar cell systems. With the SSBC DOEs, the sunlight radiation is divided into seve...Diffractive optical elements(DOEs) with spectrum separation and beam concentration(SSBC) functions have important applications in solar cell systems. With the SSBC DOEs, the sunlight radiation is divided into several wave bands so as to be effectively absorbed by photovoltaic materials with different band gaps. A new method is proposed for designing high-efficiency SSBC DOEs, which is physically simple, numerically fast, and universally applicable. The SSBC DOEs are designed by the new design method, and their performances are analyzed by the Fresnel diffraction integral method.The new design method takes two advantages over the previous design method. Firstly, the optical focusing efficiency is heightened by up to 10%. Secondly, focal positions of all the designed wavelengths can be designated arbitrarily and independently. It is believed that the designed SSBC DOEs should have practical applications to solar cell systems.展开更多
The smelting-separation process for metallized pellets of vanadium-bearing titanomagnetite concentrates was studied.The influences of smelting temperature,smelting time,and the basicity of the metallized pellet on van...The smelting-separation process for metallized pellets of vanadium-bearing titanomagnetite concentrates was studied.The influences of smelting temperature,smelting time,and the basicity of the metallized pellet on vanadium and iron recovery were investigated.The characteristics of titanium slag were analyzed using X-ray diffraction,energy dispersive spectroscopy,and mineralographic microscopic analysis.The results demonstrate that appropriate increases in smelting temperature and smelting time can improve the vanadium and iron recovery from metallized pellets and are beneficial for the slag-iron separation.Although increasing the basicity of the metallized pellet can considerably improve the vanadium and iron recovery,the TiO;grade of titanium slag was decreased.Under the optimal conditions,90.17% of vanadium and 92.98% of iron in the metallized pellet were recovered,and the TiO;grade of titanium slag was 55.01%.It was found that anosovite,augite,spinel,glassiness,and metallic iron were the main mineral phases of the titanium slag.展开更多
Embedding direct reduction followed by magnetic separation was conducted to fully recover iron and titanium separately from beach titanomagnetite (TTM). The influences of reduction conditions, such as molar ratio of...Embedding direct reduction followed by magnetic separation was conducted to fully recover iron and titanium separately from beach titanomagnetite (TTM). The influences of reduction conditions, such as molar ratio of C to Fe, reduction time, and reduction temperature, were studied. The results showed that the TTM concentrate was reduced to iron and iron-titanium oxides, depending on the reduction time, and the reduction sequence at 1 200℃ was suggested as follows : Fe2.75 Ti0.25O4→Fe2TiO4→FeTiO3→FeTi2O5. The reduction temperature played a considerable role in the reduction of TTM concentrates. Increasing temperature from 1 100 to 1 200℃ was beneficial to recovering titanium and iron, whereas the results deteriorated as temperature increased further. The results of X-ray diffraction and scanning electron microscopy analyses showed that low temperature (≤1100℃) was unfavorable for the gasification of reductant, resulting in insufficient reducing atmosphere in the reduction process. The molten phase was formed at high temperatures of 1250-1 300℃, which accelerated the migration rate of metallic particles and suppressed the diffusion of reduction gas, resulting in poor reduction. The optimum conditions for reducing TTM concentrate are as follows: molar ratio of C to Fe of 1.68, reduction time of 150 min, and reduction temperature of 1 200℃. Under these conditions, direct reduction iron powder, assaying 90.28 mass% TFe and 1.73 mass% TiO2 with iron recovery of 90.85%, and titanium concentrate, assaying 46.24 mass% TiO2 with TiO2 recovery of 91.15%, were obtained.展开更多
The pre-reduced Bayan Obo ferroniobium(FeNb)ore concentrate block was taken as raw materials for studying the physical properties of niobium-enriched slag and changes in niobium recovery rate.In addition,the dephosp...The pre-reduced Bayan Obo ferroniobium(FeNb)ore concentrate block was taken as raw materials for studying the physical properties of niobium-enriched slag and changes in niobium recovery rate.In addition,the dephosphorization rate of the slag under different melting-separation conditions was investigated using the melting-separation test.The research results demonstrate that(i)the niobium recovery rate and dephosphorization rate of the slag decrease with the increase in melting-separation temperature;(ii)the niobium recovery rate of the slag initially increases and then decreases with increase in basicity and time;and(iii)the dephosphorization rate of the slag increases with the increase in basicity and time.When the test was performed under the conditions of basicity of 0.6-0.7,time of 7-10min,and temperature of 1400-1450°C,the niobium recovery rate and dephosphorization rate are over 96%and 95%,respectively.By scanning electron microscopy,it is observed that niobium mainly exists in the form of calcium and titanium silicate within the slag phase,with uneven distribution.展开更多
Dating of lead-zinc deposits is of critical importance for better understanding of ore genesis, but has long been a big challenge due to the lack of suitable minerals that can be unequivocally linked to the ore genesi...Dating of lead-zinc deposits is of critical importance for better understanding of ore genesis, but has long been a big challenge due to the lack of suitable minerals that can be unequivocally linked to the ore genesis and that can be used for tradition radiometric methods. This kind of deposits have simple mineralogy dominated by galena and sphalerite commonly associated with calcite and other gangue minerals. Both galena and sphalerite have low and high variable Re concentrations and thus Re-Os dating of these minerals have been less promising. In addition, the recovery of Re is extremely low for galena when conventional method was applied, lending additional difficulty in precisely dating galena. In this study, we investigate the recovery of Re using different media for anion exchange separation and reporte a revised preparation method for Re-Os dating of galena and sphalerite. By using the new protocol, two reliable Re-Os isochron ages of galena and sphalerite from the Fule(20.4±3.2 Ma) and Laochang(308±25 Ma) Pb-Zn deposits in Yunnan Province, SW China, are achieved.展开更多
基金Project supported by the National Basic Research Program of China(Grant No.2013CBA01702)the National Natural Science Foundation of China(Grant Nos.11474206,91233202,11374216,and 11404224)+1 种基金the Scientific Research Project of Beijing Education Commission,China(Grant No.KM201310028005)the Scientific Research Base Development Program of the Beijing Municipal Commission of Education and the Beijing Youth Top-Notch Talent Training Plan,China(Grant No.CIT&TCD201504080)
文摘Diffractive optical elements(DOEs) with spectrum separation and beam concentration(SSBC) functions have important applications in solar cell systems. With the SSBC DOEs, the sunlight radiation is divided into several wave bands so as to be effectively absorbed by photovoltaic materials with different band gaps. A new method is proposed for designing high-efficiency SSBC DOEs, which is physically simple, numerically fast, and universally applicable. The SSBC DOEs are designed by the new design method, and their performances are analyzed by the Fresnel diffraction integral method.The new design method takes two advantages over the previous design method. Firstly, the optical focusing efficiency is heightened by up to 10%. Secondly, focal positions of all the designed wavelengths can be designated arbitrarily and independently. It is believed that the designed SSBC DOEs should have practical applications to solar cell systems.
基金Item Sponsored by National Natural Science Foundation of China(51174122)
文摘The smelting-separation process for metallized pellets of vanadium-bearing titanomagnetite concentrates was studied.The influences of smelting temperature,smelting time,and the basicity of the metallized pellet on vanadium and iron recovery were investigated.The characteristics of titanium slag were analyzed using X-ray diffraction,energy dispersive spectroscopy,and mineralographic microscopic analysis.The results demonstrate that appropriate increases in smelting temperature and smelting time can improve the vanadium and iron recovery from metallized pellets and are beneficial for the slag-iron separation.Although increasing the basicity of the metallized pellet can considerably improve the vanadium and iron recovery,the TiO;grade of titanium slag was decreased.Under the optimal conditions,90.17% of vanadium and 92.98% of iron in the metallized pellet were recovered,and the TiO;grade of titanium slag was 55.01%.It was found that anosovite,augite,spinel,glassiness,and metallic iron were the main mineral phases of the titanium slag.
基金financially supported by the National Natural Science Foundation of China (Grant No.51474018)
文摘Embedding direct reduction followed by magnetic separation was conducted to fully recover iron and titanium separately from beach titanomagnetite (TTM). The influences of reduction conditions, such as molar ratio of C to Fe, reduction time, and reduction temperature, were studied. The results showed that the TTM concentrate was reduced to iron and iron-titanium oxides, depending on the reduction time, and the reduction sequence at 1 200℃ was suggested as follows : Fe2.75 Ti0.25O4→Fe2TiO4→FeTiO3→FeTi2O5. The reduction temperature played a considerable role in the reduction of TTM concentrates. Increasing temperature from 1 100 to 1 200℃ was beneficial to recovering titanium and iron, whereas the results deteriorated as temperature increased further. The results of X-ray diffraction and scanning electron microscopy analyses showed that low temperature (≤1100℃) was unfavorable for the gasification of reductant, resulting in insufficient reducing atmosphere in the reduction process. The molten phase was formed at high temperatures of 1250-1 300℃, which accelerated the migration rate of metallic particles and suppressed the diffusion of reduction gas, resulting in poor reduction. The optimum conditions for reducing TTM concentrate are as follows: molar ratio of C to Fe of 1.68, reduction time of 150 min, and reduction temperature of 1 200℃. Under these conditions, direct reduction iron powder, assaying 90.28 mass% TFe and 1.73 mass% TiO2 with iron recovery of 90.85%, and titanium concentrate, assaying 46.24 mass% TiO2 with TiO2 recovery of 91.15%, were obtained.
基金financially supported by the National Science and Technology Support Program (2008BAB32087)
文摘The pre-reduced Bayan Obo ferroniobium(FeNb)ore concentrate block was taken as raw materials for studying the physical properties of niobium-enriched slag and changes in niobium recovery rate.In addition,the dephosphorization rate of the slag under different melting-separation conditions was investigated using the melting-separation test.The research results demonstrate that(i)the niobium recovery rate and dephosphorization rate of the slag decrease with the increase in melting-separation temperature;(ii)the niobium recovery rate of the slag initially increases and then decreases with increase in basicity and time;and(iii)the dephosphorization rate of the slag increases with the increase in basicity and time.When the test was performed under the conditions of basicity of 0.6-0.7,time of 7-10min,and temperature of 1400-1450°C,the niobium recovery rate and dephosphorization rate are over 96%and 95%,respectively.By scanning electron microscopy,it is observed that niobium mainly exists in the form of calcium and titanium silicate within the slag phase,with uneven distribution.
基金supported by the 12th Five-Year Plan Projects of State Key Laboratory of Ore Deposit Geochemistry, Chinese Academy of Sciences (Nos. SKLODG-ZY125-09, SKLODG-ZY125-02)the National Natural Science Foundation of China (Nos. 41373064, 41102053 and 41163001)the Science and Technology Plan Project of Yunnan Province (No. 2009CD029)
文摘Dating of lead-zinc deposits is of critical importance for better understanding of ore genesis, but has long been a big challenge due to the lack of suitable minerals that can be unequivocally linked to the ore genesis and that can be used for tradition radiometric methods. This kind of deposits have simple mineralogy dominated by galena and sphalerite commonly associated with calcite and other gangue minerals. Both galena and sphalerite have low and high variable Re concentrations and thus Re-Os dating of these minerals have been less promising. In addition, the recovery of Re is extremely low for galena when conventional method was applied, lending additional difficulty in precisely dating galena. In this study, we investigate the recovery of Re using different media for anion exchange separation and reporte a revised preparation method for Re-Os dating of galena and sphalerite. By using the new protocol, two reliable Re-Os isochron ages of galena and sphalerite from the Fule(20.4±3.2 Ma) and Laochang(308±25 Ma) Pb-Zn deposits in Yunnan Province, SW China, are achieved.