A yellow phosphor, Ca2BO3CI:Eu2+, is prepared by the high-temperature solid-state method. Under the condition of excitation sources ranging from ultraviolet to visible light, efficient yellow emission can be observe...A yellow phosphor, Ca2BO3CI:Eu2+, is prepared by the high-temperature solid-state method. Under the condition of excitation sources ranging from ultraviolet to visible light, efficient yellow emission can be observed. The emission spectrum shows an asymmetrical single intensive band centred at 573 nm, which corresponds to the 4f65dl→4f7 transition of Eu2+. Eu2+ ions occupy two types of Ca2+ sites in the Ca2BO3C1 lattice and form two corresponding emission centres, respectively, which lead to the asymmetrical emission of Eu2+ in Ca2BO3C1. The emission intensity of Eu2+ in Ca2BO3C1 is influenced by the Eu2+ doping concentration. Concentration quenching is discovered, and its mechanism is verified to be a dipole-dipole interaction. The value of the critical transfer distance is calculated to be 2.166 nm, which is in good agreement with the 2.120 nm value derived from the experimental data.展开更多
Y, Gd)Al 3(BO 3) 4∶Eu 3+ samples were prepared by the conventional solid state reaction. The XRD results indicate that the crystal symmetry is low. The excitation spectrum is composed of two broad bands centered ...Y, Gd)Al 3(BO 3) 4∶Eu 3+ samples were prepared by the conventional solid state reaction. The XRD results indicate that the crystal symmetry is low. The excitation spectrum is composed of two broad bands centered at about 170 and 250 nm respectively. In the emission spectra, the peak wavelength is about 616 nm under 147 nm VUV excitation. The luminescent chromaticity coordinate and the relative intensity change along with Gd 3+ mole concentration in the range of 0.15 to 0.85 mol (and Eu 3+ mole concentration, 0.02 to 0.1 mol). The correlative data show that the concentration quenching occurs when the Eu 3+ mole concentration ranges from 0.02 to 0.1 mol, and the Gd 3+→Gd 3+, Gd 3+→Eu 3+ and host→Eu 3+, Gd 3+ energy transfers exist, and Gd 3+ mole concentration influences Eu 3+ emission.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 10974013, 60978060, and 10804006)the Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20090009110027)+5 种基金the Beijing Municipal Natural Science Foundation, China (Grant No. 1102028)the National Basic Research Program of China (Grant No. 2010CB327704)the National Natural Science Foundation for Distinguished Young Scholars (Grant No. 60825407)the Beijing Municipal Science and Technology Commission, China (Grant No. Z090803044009001)the Science Fund of the Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, China (Grant No. 2010LOI12)the Excellent Doctor's Science and Technology Innovation Foundation of Beijing Jiaotong University, China (Grant No. 2011YJS073)
文摘A yellow phosphor, Ca2BO3CI:Eu2+, is prepared by the high-temperature solid-state method. Under the condition of excitation sources ranging from ultraviolet to visible light, efficient yellow emission can be observed. The emission spectrum shows an asymmetrical single intensive band centred at 573 nm, which corresponds to the 4f65dl→4f7 transition of Eu2+. Eu2+ ions occupy two types of Ca2+ sites in the Ca2BO3C1 lattice and form two corresponding emission centres, respectively, which lead to the asymmetrical emission of Eu2+ in Ca2BO3C1. The emission intensity of Eu2+ in Ca2BO3C1 is influenced by the Eu2+ doping concentration. Concentration quenching is discovered, and its mechanism is verified to be a dipole-dipole interaction. The value of the critical transfer distance is calculated to be 2.166 nm, which is in good agreement with the 2.120 nm value derived from the experimental data.
文摘Y, Gd)Al 3(BO 3) 4∶Eu 3+ samples were prepared by the conventional solid state reaction. The XRD results indicate that the crystal symmetry is low. The excitation spectrum is composed of two broad bands centered at about 170 and 250 nm respectively. In the emission spectra, the peak wavelength is about 616 nm under 147 nm VUV excitation. The luminescent chromaticity coordinate and the relative intensity change along with Gd 3+ mole concentration in the range of 0.15 to 0.85 mol (and Eu 3+ mole concentration, 0.02 to 0.1 mol). The correlative data show that the concentration quenching occurs when the Eu 3+ mole concentration ranges from 0.02 to 0.1 mol, and the Gd 3+→Gd 3+, Gd 3+→Eu 3+ and host→Eu 3+, Gd 3+ energy transfers exist, and Gd 3+ mole concentration influences Eu 3+ emission.