期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Mechanical properties and influence mechanism of confined concrete arches in high-stress tunnels 被引量:4
1
作者 Bei Jiang Zhongxin Xin +4 位作者 Xiufeng Zhang Yusong Deng Mingzi Wang Shidong Li Wentao Ren 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第7期829-841,共13页
Deep underground projects(e.g., coal mines), are often faced with complex conditions such as high stress and extremely soft rock. The strength and rigidity of the traditional support system are often insufficient,whic... Deep underground projects(e.g., coal mines), are often faced with complex conditions such as high stress and extremely soft rock. The strength and rigidity of the traditional support system are often insufficient,which makes it difficult to meet the requirements of ground control under complex conditions. As a new support form with high strength and rigidity, the confined concrete arch plays an important role in controlling the rock deformation under complex conditions. The section shape of the tunnel has an important impact on the mechanical properties and design of the support system. However, studies on the mechanical properties and influence mechanism of the new confined concrete arch are rarely reported. To this end, the mechanical properties of traditional U-shaped steel and new confined concrete arches are compared and comparative tests on arches of circular and straight-leg semicircular shapes in deep tunnels are conducted. A large mechanical testing system for underground engineering support structure is developed. The mechanical properties and influence mechanism of confined concrete arches with different section shapes under different loading modes and cross-section parameters are systematically studied. Test results show that the bearing capacity of the confined concrete arch is 2.10 times that of the U-shaped steel arch, and the bearing capacity of the circular confined concrete arch is 2.27 times that of the straight-leg semicircular arch. Among the various influencing factors and their engineering parameters,the lateral stress coefficient has the greatest impact on the bearing capacity of the confined concrete arch,followed by the steel pipe wall thickness, steel strength, and core concrete strength. Subsequently, the economic index of bearing capacity and cost is established, and the optimization design method for the confined concrete arch is proposed. Finally, this design method is applied to a high-stress tunnel under complex conditions, and the deformation of the surrounding rock is effectively controlled. 展开更多
关键词 High-stress tunnel Confined concrete arch Section shape Mechanical properties Design method
下载PDF
Numerical Simulation Analysis of Welded Joints in Arch Ribs of Large Span Steel Pipe Arch Bridges
2
作者 Deer He Nianchun Deng Xiuning Peng 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第3期19-30,共12页
In order to study the residual stress distribution law of welded joints of arch ribs of large-span steel pipe concrete arch bridges,numerical simulation of temperature,stress and strain fields based on ABAQUS for weld... In order to study the residual stress distribution law of welded joints of arch ribs of large-span steel pipe concrete arch bridges,numerical simulation of temperature,stress and strain fields based on ABAQUS for welded joints of arch-ribbed steel tubes using 7-,8-and 9-layer welds is carried out and its accuracy is demonstrated.The steel pipe welding temperature changes,residual stress distribution,different processes residual stress changes in the law,the prediction of post-weld residual stress distribution and deformation are studied in this paper.The results show that the temperature field values and test results are more consistent with the accuracy of numerical simulation of welding,the welding process is mainly in the form of heat transfer;Residual high stresses are predominantly distributed in the Fusion zone(FZ)and Heat-affected zone(HAZ),with residual stress levels tending to decrease from the center of the weld along the axial path,the maximum stress appears in the FZ and HAZ junction;The number of welding layers has an effect on the residual stress distribution,the number of welding layers increases,the residual stress tends to decrease,while the FZ and HAZ high stress area range shrinks;Increasing the number of plies will increase the amount of residual distortion. 展开更多
关键词 steel pipe and concrete arch bridge arch rib multi-pass welding residual stress numerical simulation
下载PDF
Wave passage and incoherency effects on seismic response of high arch dams 被引量:2
3
作者 H. Mirzabozorg M. Akbari M. A. Hariri Ardebili 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2012年第4期567-578,共12页
The effects ofincoherency and wave-passage on the nonlinear responses of concrete arch dams are investigated in this study. A double curvature arch dam is selected as a numerical example. The reservoir is modeled as a... The effects ofincoherency and wave-passage on the nonlinear responses of concrete arch dams are investigated in this study. A double curvature arch dam is selected as a numerical example. The reservoir is modeled as a compressible material and the foundation is modeled as a massless medium. Ground motion time-histories are artificially generated using the Monte Carlo simulation approach. Four different finite element models (FEM) are considered: uniform excitation; incoherence effect; wave passage effect; and both incoherence and wave passage effects. It was revealed that modeling multiple-supports excitation could have a significant impact on the structural response of the dam by inducing a pseudo-static effect. Also, it was concluded that the coherency effect overshadows the wave passage effect and the results obtained from non-uniform excitation of FEM, including the wave passage effect, is close to the results of the FEM when it is uniformly excited. 展开更多
关键词 concrete arch dam incoherency nonlinear analysis wave passage
下载PDF
Blast responses of shallow-buried prefabricated modular concrete tunnels reinforced by BFRP-steel bars 被引量:4
4
作者 Chengjie Zhao Zexun Tang +6 位作者 Peng Wang Jiang Feng Jiannan Zhou Xinli Kong Hansheng Geng Fengnian Jin Hualin Fan 《Underground Space》 SCIE EI 2022年第2期184-198,共15页
This paper reports the anti-blast performance of shallow-buried prefabricated modular tunnel reinforced by basalt fiber-reinforced polymer(BFRP)-steel bars.Three concrete arch members with steel bars and three concret... This paper reports the anti-blast performance of shallow-buried prefabricated modular tunnel reinforced by basalt fiber-reinforced polymer(BFRP)-steel bars.Three concrete arch members with steel bars and three concrete arch members with BFRP-steel bars were fabricated,with the other arch parameters kept constant.The three identical arches were assembled into an integral structure and then buried in soil for field anti-blast experiments.Through the experiment,the pressure on the vault,the displacement and acceleration of the vault,the strain in the reinforcement bars and the macroscopic damage of the arches under the blast load were determined.To evaluate the damage of the arch tunnel,a residual load-bearing capacity test was conducted on the arch members after the explosion experiment.The experimental results showed that the BFRP-steel bars reinforced concrete arch exhibited a higher load-bearing capacity and more safety redundancy than the steel bars reinforced concrete arch,and that the BFRP-steel bars could inhibit the occurrence of concrete cracks to a certain extent.A comparison between the arches assembled at different positions showed that the prefabricated modular tun-nel can be simplified directly as a two-dimensional arch structure under the blast load for analysis and calculation. 展开更多
关键词 BFRP-steel bars concrete arch Shallow-buried protective tunnel Anti-blast performance
原文传递
RCC Arch Dam Structure on the Taxi River and Water Storage Measure During Construction 被引量:1
5
作者 刘光廷 李鹏辉 +2 位作者 胡昱 张富德 谢树南 《Tsinghua Science and Technology》 SCIE EI CAS 2002年第3期243-250,269,共9页
The new structure of roller compacted concrete (RCC) arch dams is presented for extremely cold and earthquake prone areas. The influence of construction plans and improved materials on the stresses in the Taxi River ... The new structure of roller compacted concrete (RCC) arch dams is presented for extremely cold and earthquake prone areas. The influence of construction plans and improved materials on the stresses in the Taxi River dam is also given. Earlier impoundment of water is shown to not only benefit the engineering design but also improve the stresses during construction in winter. Low cement content in the concrete and artificial short joints improved the monolithic structure and the transmitted forces. The concrete plug installed in the first cooled part of the arch dam provides excellent force transmission in the arch, which increases the monolith of the earlier arch, reduces the increasing thermal stresses that occur later, and improves the deformation flexibility of the dam. 展开更多
关键词 roller compacted concrete (RCC) arch dam artificial short joint concrete plug
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部