期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Full-range nonlinear analysis of fatigue behaviors of reinforced concrete structures by finite element method 被引量:1
1
作者 Song Yupu Zhao Shunbo Wang Ruimin and Li Shuyao 《Acta Oceanologica Sinica》 SCIE CAS CSCD 1994年第1期143-154,共12页
The offshore reinforced concrete structures are always subject to cyclic load, such as wave load.In this paper a new finite element analysis model is developed to analyze the stress and strain state of reinforced conc... The offshore reinforced concrete structures are always subject to cyclic load, such as wave load.In this paper a new finite element analysis model is developed to analyze the stress and strain state of reinforced concrete structures including offshore concrete structures, subject to any number of the cyclic load. On the basis of the anal ysis of the experimental data,this model simplifies the number of cycles-total cyclic strain curve of concrete as three straight line segments,and it is assumed that the stress-strain curves of different cycles in each segment are the same, thus the elastoplastic analysis is only needed for the first cycle of each segment, and the stress or strain corresponding to any number of cycles can be obtained by superposition of stress or strain obtained by the above e lastoplastic analysis based on the cyclic numbers in each segment.This model spends less computer time,and can obtain the stress and strain states of the structures after any number of cycles.The endochronic-damage and ideal offshore concrete platform subject to cyclic loading are experimented and analyzed by the finite element method based on the model proposed in this paper. The results between the experiment and the finite element analysis are in good agreement,which demonstrates the validity and accuracy of the proposed model. 展开更多
关键词 Reinforced concrete structures fatigue behavior full-range nonlinear analysis finite element method
下载PDF
Earthquake safety assessment of concrete arch and gravity dams 被引量:12
2
作者 林皋 胡志强 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2005年第2期251-264,共14页
Based on research studies currently being carried out at Dalian University of Technology, some important aspects for the earthquake safety assessmcnt of concrete dams are reviewed and discussed. First, the rate-depend... Based on research studies currently being carried out at Dalian University of Technology, some important aspects for the earthquake safety assessmcnt of concrete dams are reviewed and discussed. First, the rate-dependent behavior of concrcte subjected to earthquake loading is examined, emphasizing the properties of concrete under cyclic and biaxial loading conditions. Second, a modified four-parameter Hsieh-Ting-Chen viscoplastic consistency model is developed to simulate the rate-dependent behavior of concrete. The earthquake response of a 278m high arch dam is analyzed, and the results show that the strain-rate effects become noticeable in the inelastic range, Third, a more accurate non-smooth Newton algorithm for the solution of three-dimensional frictional contact problems is developed to study the joint opening effects of arch dams during strong earthquakes. Such effects on two nearly 300m high arch dams have been studied. It was found that the canyon shape has great influence on the magnitude and distribution of the joint opening along the dam axis. Fourth, the scaled boundary finite element method presented by Song and Wolf is employed to study the dam-reservoir-foundation interaction effects of concrete dams. Particular emphases were placed on the variation of foundation stiffness and the anisotropic behavior of the foundation material on the dynamic response of concrete dams. Finally, nonlinear modeling of concrete to study the damage evolution of concrete dams during strong earthquakes is discussed. An elastic-damage mechanics approach for damage prediction of concrete gravity dams is described as an example. These findings are helpful in understanding the dynamic behavior of concrete dams and promoting the improvement of seismic safety assessment methods. 展开更多
关键词 arch dam gravity dam earthquake safety dynamic behavior of concrete strain-rate effect joint-opening effect dam-foundation interaction non-linear modeling
下载PDF
Viscoplastic Damage-Softening Constitutive Model for Concrete Subjected to Uniaxial Dynamic Compression 被引量:2
3
作者 Xiaowang Sun Yongchi Li +2 位作者 Ruiyuan Huang Zhongbao Ye Kai Zhao 《Journal of Beijing Institute of Technology》 EI CAS 2017年第4期427-433,共7页
A new viscoplastic damage-softening constitutive model is presented. It is developed by integrating a Bodner-Partom viscoplastic model with a newdamage evolution equation. A set of ordinary differential equations( O... A new viscoplastic damage-softening constitutive model is presented. It is developed by integrating a Bodner-Partom viscoplastic model with a newdamage evolution equation. A set of ordinary differential equations( ODEs) is formulated,and a Runge-Kutta integral method is used to get stress-strain curves given by the model. Also,stress-strain curves of a wide range of strain-rates for concrete were obtained by split Hopkinson pressure bar( SHPB) tests. By fitting the integral stressstrain curves to the experimental ones with the least square optimization method,we determined the material parameters in our model. Some properties of the newmodel,such as strain-rate sensitivity,damage evolution characteristics,strain-rate jump effects and unloading feature,are explored.These results showthat our new model can describe dynamic behaviors of concrete very well,and our integrating-fitting-optimizing method to get material parameters is valid. 展开更多
关键词 constitutive model damage evolution strain-rate sensitivity dynamic behavior of concrete
下载PDF
Experimental Study on Improving Seismic Behavior of Load-Bearing Masonry Wall Made of Autoclaved Aerated Concrete 被引量:1
4
作者 于敬海 曹建锋 费添慧 《Transactions of Tianjin University》 EI CAS 2013年第6期419-424,共6页
To investigate the seismic behavior of autoclaved aerated concrete load-bearing masonry wall(AACLMW), a piece of control block wall without constructional measures and five pieces of block walls with different constru... To investigate the seismic behavior of autoclaved aerated concrete load-bearing masonry wall(AACLMW), a piece of control block wall without constructional measures and five pieces of block walls with different constructional measures were tested under low reversed cyclic loading which imitated low to moderate earthquake force. The seismic behavior of AACLMW with different constructional measures in terms of failure mode, hysteretic curve, deformation capacity and displacement ductility was studied and compared with that without constructional measures. The experimental results indicate that the constructional measures comprising constructional columns and horizontal concrete strips are effective for improving the seismic behavior of AACLMW. The study in this paper can provide a reliable experimental basis for further analysis and engineering application of AACLMW in the future. 展开更多
关键词 autoclaved aerated concrete(AAC) load-bearing masonry wall(LMW) seismic behavior constructional column concrete strip
下载PDF
Moisture effect on compressive behavior of concrete under dynamic loading 被引量:2
5
作者 周继凯 丁宁 《Journal of Central South University》 SCIE EI CAS 2014年第12期4714-4722,共9页
The effect of moisture content upon compressive mechanical behavior of concrete under impact loading was studied. The axial rapid compressive loading tests of over 50 specimens with five different saturations were exe... The effect of moisture content upon compressive mechanical behavior of concrete under impact loading was studied. The axial rapid compressive loading tests of over 50 specimens with five different saturations were executed. The technique "split Hopkinson pressure bar"(SHPB) was used. The impact velocity was 10 m/s with corresponding strain rate of 50 s-1. The compressive behavior of materials was measured in terms of stress-strain curves, dynamic compressive strength, dynamic increase factor(DIF) and critical strain at a maximum stress. The data obtained from test indicate that both ascending and descending portions of stress-stain curves are affected by moisture content. However, the effect is noted to be more significant in ascending portion of the stress-strain curves. Dynamic compressive strength is higher at lower moisture content and weaker at higher moisture content.Furthermore, under nearly saturated condition, an increase in compressive strength can be found. The effect of moisture content on the average DIF of concrete is not significant. The critical compressive strain of concrete does not change with moisture content. 展开更多
关键词 concrete split Hopkinson pressure bar high strain rate compressive behavior moisture content
下载PDF
Experimental study on the time-dependent dynamic mechanical behaviour of C60 concrete under high-temperatures
6
作者 李洪超 刘殿书 +3 位作者 赵磊 Greg YOU 梁书锋 王宇涛 《Journal of Beijing Institute of Technology》 EI CAS 2015年第3期313-320,共8页
To study the dynamic mechanical behavior of C 60 concrete at high temperatures,impact tests under different steady-state temperature fields( 100,200,300,400 and 500 ℃) were conducted under a variety of durations at... To study the dynamic mechanical behavior of C 60 concrete at high temperatures,impact tests under different steady-state temperature fields( 100,200,300,400 and 500 ℃) were conducted under a variety of durations at the corresponding constant high temperature,namely 0,30,60,90 and 120 min,employing split H opkinson pressure bar( SH PB) system. In addition,the impact tests were also conducted on the specimens cooled fromthe high temperature to the roomtemperature and the specimen under roomtemperature. Fromthe analysis,it is found that C 60 concrete has a time-dependent behavior under hightemperature environment. U nder 100,200,300,400 and 500 ℃ steady-state temperature fields respectively,as the duration at the corresponding constant high temperature increases,the dynamic compressive strength and the elastic modulus decrease but the peak strain generally ascends. After cooling to the roomtemperature,the dynamic compressive strength and the elastic modulus descend as well,but the peak strain increases first and then decreases slightly,when the duration increases. For specimens under and cooled fromthe high-temperature,as the temperature increases,the dynamic compressive strength and the peak strain raise first and then reduce gradually,and the dynamic compressive strength of specimen under high temperature is higher than that of the specimen cooled fromthe same high temperature. 展开更多
关键词 concrete SHPB high temperature dynamic mechanical behavior
下载PDF
Simulation of Temperature Effects on Concrete Residual Strength of the Slab-Column Connections
7
作者 Wenchen Ma 《Frontiers Research of Architecture and Engineering》 2019年第4期15-19,共5页
Finite element simulations were conducted to explore the effects of high temperatures on the loading capacity of slab-column connection for the concrete flat-plate structures by the finite element analysis software AB... Finite element simulations were conducted to explore the effects of high temperatures on the loading capacity of slab-column connection for the concrete flat-plate structures by the finite element analysis software ABAQUS.The structure used for the simulation is a slab which thickness is 150 mm with a 300 mm square column in the middle of slab,the column height is 450mm.The size of this slab is the same as experiments conducted by previous paper[1].Based on the results of simulation,the punching capacity of this structure not experienced high temperature can be predicted with very good accuracy.But the result from simulations underestimated the loading capacity of the structure after it has been cooled by around 10%.This phenomenon is a little bit conflicts with the known experimental results,however,it can be adjusted by modify the material parameters built-in the software.This article is focus on how to best simulate the concrete behavior for both linear and nonlinear part under the room temperature and cooling after experience a very high temperature. 展开更多
关键词 Temperature effects Residual strength of concrete Non-linear behavior of concrete
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部