Based on the test results, the differences of the carbonized depth of concrete measured by phenolphthalein indicator and rainbow indicator were discussed, the effects of the water to cement ratio of concrete, the carb...Based on the test results, the differences of the carbonized depth of concrete measured by phenolphthalein indicator and rainbow indicator were discussed, the effects of the water to cement ratio of concrete, the carbonized age and the relative humidity of environment on the carbonized depth of concrete and the depth of half-carbonized zone corresponding to green zone measured by rainbow indicator were also analyzed. It is proved that the depth measured by phenolphthalein indicator is always smaller than that measured by rainbow indicator, and the half-carbonized zone can only be measured by rainbow indicator. The carbonized and half-carbonized depths of concrete are influenced by the carbonation age, the water to cement ratio of concrete and the relative humidity of environment. It is suggested that the phenolphthalein indicator can be used to measure the carbonized depth of concrete when the strength grade of concrete is below C45, otherwise, the rainbow indicator should be utilized.展开更多
The effect of carbonation on fatigue performance of ground granulated blast-furnace slag concrete was investigated. Based on the static compression tests of carbonated GGBS-concrete, the correlation between carbonatio...The effect of carbonation on fatigue performance of ground granulated blast-furnace slag concrete was investigated. Based on the static compression tests of carbonated GGBS-concrete, the correlation between carbonation depth and compressive strength was analyzed and an equation between carbonation depth and compressive strength was put forward. Meanwhile, fatigue S-N curves of various carbonation depths were fitted, and the infl uence of carbonation on fatigue life and strength was studied. Carbonation has a dual effect on the fatigue behavior of GGBS-concrete. A fatigue equation based on the depth of carbonation was established. Also, the probabilistic distribution of fatigue life of carbonated concrete at a given stress level was modeled by the two-parameter Weibull distribution.展开更多
The effect of carbonation treatment and mixing method on the mechanical properties and interfacial transition zone(ITZ) properties of recycled aggregate concrete(RAC) was investigated. Properties of recycled concr...The effect of carbonation treatment and mixing method on the mechanical properties and interfacial transition zone(ITZ) properties of recycled aggregate concrete(RAC) was investigated. Properties of recycled concrete aggregate(RCA) were tested firstly. Then, five types of concretes were made and slump of fresh concrete was measured immediately after mixing. Compressive strength and splitting tensile strength of hardened concrete were measured at 28 d. Meanwhile, the microstructure of RAC was analyzed by backscattered electron(BSE) image. It was found that the water absorption ratio of carbonated recycled concrete aggregate(CRCA) was much lower when compared to the untreated RCA. Comparatively, the apparent density of CRCA was not significantly modified. The concrete strength results indicate that the mix CRAC-2 prepared with CRCA by adopting two-stage mixing approach shows the highest compressive strength value compared to the other mixes. The microstructural analysis demonstrate that the mix CRAC-2 has a much denser old ITZ than the untreated RAC because of the chemical reaction between CO2 and the hydration products of RCA. This study confirms that the ITZ microstructure of RAC can be efficiently modified by carbonation treatment of RCA and encourages broadening the application of construction and demolition wastes.展开更多
After having measured the electric resistance of carbon firbre reinforced concrete (CFRC) by applying a D. C. current, it was found that the current passing through the specimen under a constant voltage decreased with...After having measured the electric resistance of carbon firbre reinforced concrete (CFRC) by applying a D. C. current, it was found that the current passing through the specimen under a constant voltage decreased with the time, and if changing the value of voltage, the electric resistance was obviously affected. When current flew through the specimen, polarisation emerged under a high votage (>5 upsilon), but that could be neglected under a low voltage (<5 upsilon).(1)展开更多
According to the phenomenon that the physical properties have,a great effect on the electric capability of carbon fiber reinforced concrete, the author researched the relationship between DC resistance of carbon fiber...According to the phenomenon that the physical properties have,a great effect on the electric capability of carbon fiber reinforced concrete, the author researched the relationship between DC resistance of carbon fiber reinforced concrete and curing age using the two-probe method. Then the effect of insulative area, location and quantity on DC resistance of carbon fiber reinforced concrete was investigated at different curing age with analysis of hydration. The results suggest that DC resistance increases greatly with its curing age, which illustrates the relationship like Gaussian curve. In every curing ages the electric capability of carbon fiber reinforced concrete weakenes with the increase of insulative area. In same curing ages, section and insulative area, the more the quantity of insulation, the stronger the conductibility. The insulative location in optimal position can only result in optimal conductibility.展开更多
According to the principle of electrical resistance tomography ( ERT), the resistivity distribution of the carbon fiber reinforced concrete (CFRC) in the sensing field can be measured by injecting exciting current...According to the principle of electrical resistance tomography ( ERT), the resistivity distribution of the carbon fiber reinforced concrete (CFRC) in the sensing field can be measured by injecting exciting current and measuring the voltage on the sensor electrode arrays installed on the surface of the object. Therefore, measurement of the resistivity distribution of CFRC is divided into first measuring the boundary conditions and then inversely computing the resistivity distribution. To reach this goal, an ERT system was constructed, which is composed of a sensor array unit, a data acquisition unit and an image reconstruction unit. Simulations of static ERT was performed on set-ups with many objects spread in a homogeneous background, and a simulation of dynamic ERT was also done on a rectangular board, the resistivity of which was changed within a small domain of it. Then, the resistivity distribution of a CFRC sample with a circlar hole as the target was detected by the ERT system. Simulation and experimental results show that the reconstructed ERT image reflects the resistivity distribution or the resistivity change of CFRC structure well. Especially, a small change in resistivity can be identified from the reconstructed images in the simulation of dynamic ERT images.展开更多
Two kinds of simulated concrete pore solutions(SPSs) were treated with different amounts of synthetic calcium silicate hydrate(C-S-H). The variation of the [Cl^-]/[OH^-] ratio in SPS was measured and the corrosion...Two kinds of simulated concrete pore solutions(SPSs) were treated with different amounts of synthetic calcium silicate hydrate(C-S-H). The variation of the [Cl^-]/[OH^-] ratio in SPS was measured and the corrosion susceptibility of carbon steel in the SPS was investigated with potentiodynamic polarization, EIS and weight lose tests. The experimental results showed that for the SPS at p H 12.5, as the amount of C-S-H increases, the [Cl^-]/[OH^-] ratio increases thereby causing an increase in the corrosion susceptibility of the steel. While for the SPS at p H 9.7, with increasing C-S-H amount, the drop amplitudes of both [Cl^-]/[OH^-] ratio and steel corrosion rate first decrease and then increase, and a 3% C-S-H addition shows the best inhibition effect. XPS results demonstrate that after C-S-H treating in p H 12.5 SPS the [Fe^(3+)]/[Fe^(2+)] ratio in the film on steel surface is reduced while in p H 9.7 SPS the [Fe^(3+)]/[Fe^(2+)] ratio is increased. The different effects of the C-S-H amount on the two SPSs and the steel corrosion behavior result from the influences of C-S-H on the SPS p H, which is related to the composition of the SPS.展开更多
A stochastic finite element computational methodology for probabilistic durability assessment of deteriorating reinforced concrete(RC) bridges by considering the time-and space-dependent variabilities is presented.F...A stochastic finite element computational methodology for probabilistic durability assessment of deteriorating reinforced concrete(RC) bridges by considering the time-and space-dependent variabilities is presented.First,finite element analysis with a smeared cracking approach is implemented.The time-dependent bond-slip relationship between steel and concrete,and the stress-strain relationship of corroded steel bars are considered.Secondly,a stochastic finite element-based computational framework for reliability assessment of deteriorating RC bridges is proposed.The spatial and temporal variability of several parameters affecting the reliability of RC bridges is considered.Based on the data reported by several researchers and from field investigations,the Monte Carlo simulation is used to account for the uncertainties in various parameters,including local and general corrosion in rebars,concrete cover depth,surface chloride concentration,chloride diffusion coefficient,and corrosion rate.Finally,the proposed probabilistic durability assessment approach and framework are applied to evaluate the time-dependent reliability of a girder of a RC bridge located on the Tianjin Binhai New Area in China.展开更多
Firstly,neural network based on improved particle swarm optimization (PSO)algorithm is introduced in this paper. Based on the data collected from projects in typical areas,the concrete carbonation depth is assessed wi...Firstly,neural network based on improved particle swarm optimization (PSO)algorithm is introduced in this paper. Based on the data collected from projects in typical areas,the concrete carbonation depth is assessed with consideration of various factors such as unit cement consumption (C),unit water consumption (W),binder material content (B),water binder ratio (W/B ),concrete strength (MPa),rapid carbonization days (D),fly ash consumption of unit volume concrete(FA),fly ash percentage of total cementitious materials (FA%),expansion agent consumption of unit volume concrete(EA),expansion agent percentage of total cementitious materials (FA%).Gaining the data from project-experiment,a model is presented to calculate and forecast carbonation depth using neural network based on improved PSO algorithm. The calculation results indicate that this algorithm accord with the prediction carbonation depth of concrete accuracy requirements and has a better convergence and generalization,worth being popularized.展开更多
Carbonate concretions are conspicuous in organic-rich shales and are generally related to decomposition of organic matter.The black shales from the Chang 7 Member of the Upper Triassic Yanchang Formation of the southe...Carbonate concretions are conspicuous in organic-rich shales and are generally related to decomposition of organic matter.The black shales from the Chang 7 Member of the Upper Triassic Yanchang Formation of the southern Ordos Basin host abundant carbonate concretions,which provide a unique record of depositional and early diagenetic conditions of the paleo-lake sediments.However,little attention has been given to the genesis and growth processes of the concretions in these lacustrine petroleum source rocks.New petrographic observations and geochemical analysis show that the concretions are composed of calcite,phosphate fossil fragments,K-NH4-feldspar,quartz,bitumen,and minor Fe-dolomite.Phosphate minerals,mainly carbonate fluorapatite(CFA),show pervasive replacement by calcite,most of which contains phosphorus,ranging in concentration from 0.26 to 2.35 wt%.This suggests that the phosphate minerals are the precursors for concretion growth.Positiveδ13C(+5.6 to+12.4‰V-PDB)signatures and the absence of pyrite indicate that microbial methanogenesis was the dominant driver for concretion growth,rather than bacterial sulfate reduction.Quartz,bitumen,and Fe-dolomite are the last cements that occurred,at deep burial depths and high temperatures.The formation of phosphate minerals might have been induced by upwelling of phosphate-enriched deep water in the Late Triassic paleo-lake,which promoted phytoplankton blooms and further enrichment of organic matter.Extremely slow sedimentation rates of fine-grained detrital minerals,relative to dead organism accumulation,led to the high permeabilities of the organic-rich sediments and rapid concretion growth during shallow burial.The close association of phosphate-bearing carbonate concretions and organic-rich shales reflects that upwelling played a critical role in the formation of the high-quality petroleum source rocks in the Triassic paleo-Ordos lake.展开更多
The relationship between the electrical resistivity of carbon fiber reinforced concrete(CFRC) containing different carbon fiber contents and temperature was studied.it is found that carbon fiber contents influence gre...The relationship between the electrical resistivity of carbon fiber reinforced concrete(CFRC) containing different carbon fiber contents and temperature was studied.it is found that carbon fiber contents influence greatly on the temperature sensibility of CFRC road material.Only with a certain amount of carbon fiber can CFRC show a sensitive and stable temperature sensibility.展开更多
Carbon/glass fiber hybrid textile reinforced concrete is a relatively new composite material with good mechanical capacity and excellent electrical conductivity.Both small-scale slab heating experiments and numerical ...Carbon/glass fiber hybrid textile reinforced concrete is a relatively new composite material with good mechanical capacity and excellent electrical conductivity.Both small-scale slab heating experiments and numerical simulation are presented in this paper.Temperature variation curves obtained during heating indicate the effects of environmental temperature,heat-conducting layer thickness and electric heating power.Comparison of temperature rising between the situations with and without thermal isolation layer is given as well.The results indicate that the textile can form a good conductive heating network and generate enough heat to raise the temperature in the concrete when connected to a power supply,while the resistance of the slab remains stable during the heating.Numerical results are in good accordance with the experiments.Real time snow-melting experiment was conducted to verify the feasibility of deicing.The electrothermal properties of textile can be utilized for deicing and snow melting in a safe,environmentally friendly and efficient way.展开更多
This paper presents the results of an experimental research on reinforced concrete beams strengthened with an external carbon fibre reinforced polymer(CFRP) layer under long-term load action that lasted for 330 d.We d...This paper presents the results of an experimental research on reinforced concrete beams strengthened with an external carbon fibre reinforced polymer(CFRP) layer under long-term load action that lasted for 330 d.We describe the characteristics of deflection development of the beams strengthened with different additional anchorages of the external carbon fibre composite layer during the period of interest.The conducted experiments showed that the additional anchorage influences the slip of the external layer with respect to the strengthened element.Thus,concrete and carbon fibre composite interface stiffness decreases with a long-term load action.Therefore,the proposed method of analysis based on the built-up-bars theory can be used to estimate concrete and carbon fibre composite interface stiffness in the case of long-term load.展开更多
基金Funded by Outstanding Youth Science Foundation of Henan Province of China (No. 04120002300)
文摘Based on the test results, the differences of the carbonized depth of concrete measured by phenolphthalein indicator and rainbow indicator were discussed, the effects of the water to cement ratio of concrete, the carbonized age and the relative humidity of environment on the carbonized depth of concrete and the depth of half-carbonized zone corresponding to green zone measured by rainbow indicator were also analyzed. It is proved that the depth measured by phenolphthalein indicator is always smaller than that measured by rainbow indicator, and the half-carbonized zone can only be measured by rainbow indicator. The carbonized and half-carbonized depths of concrete are influenced by the carbonation age, the water to cement ratio of concrete and the relative humidity of environment. It is suggested that the phenolphthalein indicator can be used to measure the carbonized depth of concrete when the strength grade of concrete is below C45, otherwise, the rainbow indicator should be utilized.
基金Funded by the National Natural Science Foundation of China(No.51278167)the Research and Innovation Project for College Graduates of Jiangsu Province(No.CXZZ12_0238)the Natural Science Foundation of Jiangsu Province,China(No.BK.20131374)
文摘The effect of carbonation on fatigue performance of ground granulated blast-furnace slag concrete was investigated. Based on the static compression tests of carbonated GGBS-concrete, the correlation between carbonation depth and compressive strength was analyzed and an equation between carbonation depth and compressive strength was put forward. Meanwhile, fatigue S-N curves of various carbonation depths were fitted, and the infl uence of carbonation on fatigue life and strength was studied. Carbonation has a dual effect on the fatigue behavior of GGBS-concrete. A fatigue equation based on the depth of carbonation was established. Also, the probabilistic distribution of fatigue life of carbonated concrete at a given stress level was modeled by the two-parameter Weibull distribution.
基金Funded by the National Natural Science Foundation of China(Nos.51278073,51678081,51678143)State Key Laboratory for Geo-mechanics and Deep Underground Engineering,China University of Mining&Technology(No.SKLGDUEK1704)
文摘The effect of carbonation treatment and mixing method on the mechanical properties and interfacial transition zone(ITZ) properties of recycled aggregate concrete(RAC) was investigated. Properties of recycled concrete aggregate(RCA) were tested firstly. Then, five types of concretes were made and slump of fresh concrete was measured immediately after mixing. Compressive strength and splitting tensile strength of hardened concrete were measured at 28 d. Meanwhile, the microstructure of RAC was analyzed by backscattered electron(BSE) image. It was found that the water absorption ratio of carbonated recycled concrete aggregate(CRCA) was much lower when compared to the untreated RCA. Comparatively, the apparent density of CRCA was not significantly modified. The concrete strength results indicate that the mix CRAC-2 prepared with CRCA by adopting two-stage mixing approach shows the highest compressive strength value compared to the other mixes. The microstructural analysis demonstrate that the mix CRAC-2 has a much denser old ITZ than the untreated RAC because of the chemical reaction between CO2 and the hydration products of RCA. This study confirms that the ITZ microstructure of RAC can be efficiently modified by carbonation treatment of RCA and encourages broadening the application of construction and demolition wastes.
基金Financed by National Natural Science Fundation of China Key project.No.59432061
文摘After having measured the electric resistance of carbon firbre reinforced concrete (CFRC) by applying a D. C. current, it was found that the current passing through the specimen under a constant voltage decreased with the time, and if changing the value of voltage, the electric resistance was obviously affected. When current flew through the specimen, polarisation emerged under a high votage (>5 upsilon), but that could be neglected under a low voltage (<5 upsilon).(1)
基金the National Natural Science Foundation of China(No.50438010)
文摘According to the phenomenon that the physical properties have,a great effect on the electric capability of carbon fiber reinforced concrete, the author researched the relationship between DC resistance of carbon fiber reinforced concrete and curing age using the two-probe method. Then the effect of insulative area, location and quantity on DC resistance of carbon fiber reinforced concrete was investigated at different curing age with analysis of hydration. The results suggest that DC resistance increases greatly with its curing age, which illustrates the relationship like Gaussian curve. In every curing ages the electric capability of carbon fiber reinforced concrete weakenes with the increase of insulative area. In same curing ages, section and insulative area, the more the quantity of insulation, the stronger the conductibility. The insulative location in optimal position can only result in optimal conductibility.
基金The National Natural Science Foundation of China (No.50238040)
文摘According to the principle of electrical resistance tomography ( ERT), the resistivity distribution of the carbon fiber reinforced concrete (CFRC) in the sensing field can be measured by injecting exciting current and measuring the voltage on the sensor electrode arrays installed on the surface of the object. Therefore, measurement of the resistivity distribution of CFRC is divided into first measuring the boundary conditions and then inversely computing the resistivity distribution. To reach this goal, an ERT system was constructed, which is composed of a sensor array unit, a data acquisition unit and an image reconstruction unit. Simulations of static ERT was performed on set-ups with many objects spread in a homogeneous background, and a simulation of dynamic ERT was also done on a rectangular board, the resistivity of which was changed within a small domain of it. Then, the resistivity distribution of a CFRC sample with a circlar hole as the target was detected by the ERT system. Simulation and experimental results show that the reconstructed ERT image reflects the resistivity distribution or the resistivity change of CFRC structure well. Especially, a small change in resistivity can be identified from the reconstructed images in the simulation of dynamic ERT images.
基金Funded by the National Natural Science Foundation of China(Nos.51171014 and 51210001)
文摘Two kinds of simulated concrete pore solutions(SPSs) were treated with different amounts of synthetic calcium silicate hydrate(C-S-H). The variation of the [Cl^-]/[OH^-] ratio in SPS was measured and the corrosion susceptibility of carbon steel in the SPS was investigated with potentiodynamic polarization, EIS and weight lose tests. The experimental results showed that for the SPS at p H 12.5, as the amount of C-S-H increases, the [Cl^-]/[OH^-] ratio increases thereby causing an increase in the corrosion susceptibility of the steel. While for the SPS at p H 9.7, with increasing C-S-H amount, the drop amplitudes of both [Cl^-]/[OH^-] ratio and steel corrosion rate first decrease and then increase, and a 3% C-S-H addition shows the best inhibition effect. XPS results demonstrate that after C-S-H treating in p H 12.5 SPS the [Fe^(3+)]/[Fe^(2+)] ratio in the film on steel surface is reduced while in p H 9.7 SPS the [Fe^(3+)]/[Fe^(2+)] ratio is increased. The different effects of the C-S-H amount on the two SPSs and the steel corrosion behavior result from the influences of C-S-H on the SPS p H, which is related to the composition of the SPS.
基金The National Natural Science Foundation of China (No.50708065)the National High Technology Research and Development Program of China (863 Program) (No. 2007AA11Z113)Specialized Research Fund for the Doctoral Program of Higher Education (No. 20070056125)
文摘A stochastic finite element computational methodology for probabilistic durability assessment of deteriorating reinforced concrete(RC) bridges by considering the time-and space-dependent variabilities is presented.First,finite element analysis with a smeared cracking approach is implemented.The time-dependent bond-slip relationship between steel and concrete,and the stress-strain relationship of corroded steel bars are considered.Secondly,a stochastic finite element-based computational framework for reliability assessment of deteriorating RC bridges is proposed.The spatial and temporal variability of several parameters affecting the reliability of RC bridges is considered.Based on the data reported by several researchers and from field investigations,the Monte Carlo simulation is used to account for the uncertainties in various parameters,including local and general corrosion in rebars,concrete cover depth,surface chloride concentration,chloride diffusion coefficient,and corrosion rate.Finally,the proposed probabilistic durability assessment approach and framework are applied to evaluate the time-dependent reliability of a girder of a RC bridge located on the Tianjin Binhai New Area in China.
文摘Firstly,neural network based on improved particle swarm optimization (PSO)algorithm is introduced in this paper. Based on the data collected from projects in typical areas,the concrete carbonation depth is assessed with consideration of various factors such as unit cement consumption (C),unit water consumption (W),binder material content (B),water binder ratio (W/B ),concrete strength (MPa),rapid carbonization days (D),fly ash consumption of unit volume concrete(FA),fly ash percentage of total cementitious materials (FA%),expansion agent consumption of unit volume concrete(EA),expansion agent percentage of total cementitious materials (FA%).Gaining the data from project-experiment,a model is presented to calculate and forecast carbonation depth using neural network based on improved PSO algorithm. The calculation results indicate that this algorithm accord with the prediction carbonation depth of concrete accuracy requirements and has a better convergence and generalization,worth being popularized.
基金This work was supported by the National Natural Science Foundation of China(Program No.41330315)the Natural Science Foundation of Shaanxi Province(Program No.2020JQ-766)+1 种基金the Scientific Research Program Funded by Shaanxi Provincial Education Department(Program No.20JK0838)the Opening Foundation of Shandong Key Laboratory of Depositional Mineralization&Sedimentary Mineral,Shandong University of Science and Technology(Program No.DMSM20190034).
文摘Carbonate concretions are conspicuous in organic-rich shales and are generally related to decomposition of organic matter.The black shales from the Chang 7 Member of the Upper Triassic Yanchang Formation of the southern Ordos Basin host abundant carbonate concretions,which provide a unique record of depositional and early diagenetic conditions of the paleo-lake sediments.However,little attention has been given to the genesis and growth processes of the concretions in these lacustrine petroleum source rocks.New petrographic observations and geochemical analysis show that the concretions are composed of calcite,phosphate fossil fragments,K-NH4-feldspar,quartz,bitumen,and minor Fe-dolomite.Phosphate minerals,mainly carbonate fluorapatite(CFA),show pervasive replacement by calcite,most of which contains phosphorus,ranging in concentration from 0.26 to 2.35 wt%.This suggests that the phosphate minerals are the precursors for concretion growth.Positiveδ13C(+5.6 to+12.4‰V-PDB)signatures and the absence of pyrite indicate that microbial methanogenesis was the dominant driver for concretion growth,rather than bacterial sulfate reduction.Quartz,bitumen,and Fe-dolomite are the last cements that occurred,at deep burial depths and high temperatures.The formation of phosphate minerals might have been induced by upwelling of phosphate-enriched deep water in the Late Triassic paleo-lake,which promoted phytoplankton blooms and further enrichment of organic matter.Extremely slow sedimentation rates of fine-grained detrital minerals,relative to dead organism accumulation,led to the high permeabilities of the organic-rich sediments and rapid concretion growth during shallow burial.The close association of phosphate-bearing carbonate concretions and organic-rich shales reflects that upwelling played a critical role in the formation of the high-quality petroleum source rocks in the Triassic paleo-Ordos lake.
文摘The relationship between the electrical resistivity of carbon fiber reinforced concrete(CFRC) containing different carbon fiber contents and temperature was studied.it is found that carbon fiber contents influence greatly on the temperature sensibility of CFRC road material.Only with a certain amount of carbon fiber can CFRC show a sensitive and stable temperature sensibility.
文摘Carbon/glass fiber hybrid textile reinforced concrete is a relatively new composite material with good mechanical capacity and excellent electrical conductivity.Both small-scale slab heating experiments and numerical simulation are presented in this paper.Temperature variation curves obtained during heating indicate the effects of environmental temperature,heat-conducting layer thickness and electric heating power.Comparison of temperature rising between the situations with and without thermal isolation layer is given as well.The results indicate that the textile can form a good conductive heating network and generate enough heat to raise the temperature in the concrete when connected to a power supply,while the resistance of the slab remains stable during the heating.Numerical results are in good accordance with the experiments.Real time snow-melting experiment was conducted to verify the feasibility of deicing.The electrothermal properties of textile can be utilized for deicing and snow melting in a safe,environmentally friendly and efficient way.
文摘This paper presents the results of an experimental research on reinforced concrete beams strengthened with an external carbon fibre reinforced polymer(CFRP) layer under long-term load action that lasted for 330 d.We describe the characteristics of deflection development of the beams strengthened with different additional anchorages of the external carbon fibre composite layer during the period of interest.The conducted experiments showed that the additional anchorage influences the slip of the external layer with respect to the strengthened element.Thus,concrete and carbon fibre composite interface stiffness decreases with a long-term load action.Therefore,the proposed method of analysis based on the built-up-bars theory can be used to estimate concrete and carbon fibre composite interface stiffness in the case of long-term load.