期刊文献+
共找到30篇文章
< 1 2 >
每页显示 20 50 100
Behaviour of Reinforced Concrete Columns Strengthened with Ferrocement under Compression Conditions: Experimental Approach
1
作者 Adnan Al-Sibahy 《World Journal of Engineering and Technology》 2016年第4期608-622,共15页
This paper reports a study based upon experimental investigation which aims to assess the behaviour of reinforced concrete columns strengthened with a new configuration of steel wire mesh as part of ferrocement layer ... This paper reports a study based upon experimental investigation which aims to assess the behaviour of reinforced concrete columns strengthened with a new configuration of steel wire mesh as part of ferrocement layer under the action of axial compression loads. Square and circular small scale columns with three different slenderness ratios of 5, 6.7 and 10 were adopted. A comprehensive experimental progarmme was then running to measure the load capacity and both lateral and vertical displacements. The failure mode was also monitored for each tested case. The results obtained was compared with the reference column samples (without wire mesh) and with some expressions suggested by ACI Code. The experimental results showed that the most influential parameter on the property of load carrying capacity is the slenderness of column. As the slenderness increases, the load capacity clearly decreases. The use of wire mesh enhanced the capability of column to resist the axial loads due to confinement role provided by such material. The maximum percentage increase in load carrying capacity for the modified columns compared with those for the reference samples was 53% for the circular column at slenderness ratio of 10. The critical path of the failure mode was similar for all of the tested columns and normally began from the top or bottom ends, then, in some cases, passed through the middle zone of the column. A suitable expression was suggested to be used for calculating the modulus of elasticity of the tested column based upon the value of load carrying capacity under compression loads. 展开更多
关键词 FERROCEMENT concrete columns Compression Loads Slenderness Ratios
下载PDF
Dynamic performance of angle-steel concrete columns under low cyclic loading-I:Experimental study 被引量:21
2
作者 郑文忠 计 静 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2008年第1期67-75,共9页
This paper describes low cyclic loading testing of nine angle-steel concrete column (ASCC) specimens. In the tests, the influence of the shear-span ratio, axial compression ratio and shear steel plate ratio on the h... This paper describes low cyclic loading testing of nine angle-steel concrete column (ASCC) specimens. In the tests, the influence of the shear-span ratio, axial compression ratio and shear steel plate ratio on the hysteretic behavior, energy dissipation, strength degradation, stiffness degradation, skeleton curve and ductility of the ASCCs is studied. Based on the test results, some conclusions are presented. The P-A and sectional M -φ hysteretic models for the ASCCs are presented in a companion paper (Zheng and Ji, 2008). 展开更多
关键词 cyclic loading test DUCTILITY hysteretic model angle-steel concrete column shear-span ratio steel platestirrup steel jacketing seismic retrofitting
下载PDF
Dynamic performance of angle-steel concrete columns under low cyclic loading-II:parametric study 被引量:16
3
作者 Zheng Wenzhong Ji Jing 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2008年第2期137-146,共10页
Tests of nine angle-steel concrete column (ASCC) specimens under low cyclic loading are described in a companion paper (Zheng and Ji, 2008). In this paper, the skeleton curves from the numerical simulation are pre... Tests of nine angle-steel concrete column (ASCC) specimens under low cyclic loading are described in a companion paper (Zheng and Ji, 2008). In this paper, the skeleton curves from the numerical simulation are presented, and show good agreement with the test results. Furthermore, parametric studies are conducted to explore the influence of factors such as the axial compression ratio, shear steel plate ratio, steel ratio, prismatic concrete compression strength, yield strength of angle steel and shear span ratio, etc., on the monotonic load-displacement curves of the ASCCs. Based on a statistical analysis of the calculated results, hysteretic models for load-displacement and moment-curvature are proposed, which agree well with the test results. Finally, some suggestions concerning the conformation of ASCCs are proposed, which could be useful in engineering practice. 展开更多
关键词 low cyclic loading angle-steel concrete column shear-span ratio steel plate stirrup hysteretic model
下载PDF
Compressive Strength Estimation for the Fiber-Reinforced Polymer (FRP)-Confined Concrete Columns with Different Shapes Using Artificial Neural Networks 被引量:3
4
作者 曹玉贵 李小青 胡隽 《Journal of Donghua University(English Edition)》 EI CAS 2015年第3期395-400,共6页
An evaluation of existing strength of concrete columns confined with fiber-reinforced polymer( FRP) was presented with extensive collection of experimental data. According to the evaluation results, artificial neural ... An evaluation of existing strength of concrete columns confined with fiber-reinforced polymer( FRP) was presented with extensive collection of experimental data. According to the evaluation results, artificial neural networks( ANNs) model to predict the ultimate strength of FRP confined column with different shapes was proposed. The models had seven inputs including the column length,the tensile strength of the FRP in the hoop direction,the total thickness of FRP,the diameter of the concrete specimen,the elastic modulus of FRP,the corner radius and the concrete compressive strength. The compressive strength of the confined concrete was the output data. The results reveal that the proposed models have good prediction and generalization capacity with acceptable errors. 展开更多
关键词 compressive strength concrete column artificial neural networks(ANN) fiber-reinforced polymer(FRP)
下载PDF
Nonlinear fi nite element analysis of high-strength concrete columns and experimental verification 被引量:1
5
作者 吕西林 陈绍琳 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2008年第1期77-89,共13页
This paper describes a nonlinear finite element (FE) analysis of high strength concrete (HSC) columns, and verifies the results through laboratory experiments. First, a cyclically lateral loading test on nine cant... This paper describes a nonlinear finite element (FE) analysis of high strength concrete (HSC) columns, and verifies the results through laboratory experiments. First, a cyclically lateral loading test on nine cantilever column specimens of HSC is described and a numerical simulation is presented to verify the adopted FE models. Next, based on the FE model for specimen No.6, numerical simulations for 70 cases, in which different concrete strengths, stirrup ratios and axial load ratios are considered, are presented to explore the effect of these parameters on the behavior of the HSC columns, and to check the rationality of requirements for these columns specified in the China Code for Seismic Design of Buildings (GB 50011- 2001). In addition, three cases with different stirrup strengths are analyzed to investigate their effect on the behavior of HSC columns. Finally, based on the numerical results some conclusions are presented. 展开更多
关键词 high-strength concrete column DIANA BOND-SLIP balanced axial load ratio stirrup ratio
下载PDF
Experimental study on the compressive behaviors of CFRP tube-encased concrete columns 被引量:1
6
作者 Wenbin Sun~(a) School of Civil Engineering,Huaiyin Institute of Technology,89 Beijing North Road,Jiangsu,223001,China 《Theoretical & Applied Mechanics Letters》 CAS 2011年第2期29-32,共4页
Nine square concrete columns including 6 CFRP/ECCs and 3 concrete columns are prepared,which have cross-section of 200 mm×200 mm and height of 600 mm.The CFRP tubes with fibers oriented at hoop direction were man... Nine square concrete columns including 6 CFRP/ECCs and 3 concrete columns are prepared,which have cross-section of 200 mm×200 mm and height of 600 mm.The CFRP tubes with fibers oriented at hoop direction were manufactured to have 3 or 5 layers of CFRP with 10 mm, 20 mm,or 40 mm rounding corner radii at vertical edges.A 100 mm overlap in the direction of fibers was provided to ensure proper bond.Uniaxial compression tests were conducted to investigate the compressive behavior.It is evident that the CFRP tube confinement can improve the behavior of concrete core,in terms of axial compressive strength or axial deformability.Test results show that the stress-strain behavior of CFRP/ECCs vary with different confinement parameters,such as the number of confinement layers and the rounding corner radius. 展开更多
关键词 concrete column encasement CONFINEMENT compressive behavior
下载PDF
Mesoscopic investigation on seismic performance of corroded reinforced concrete columns
7
作者 Jin Liu Li Yanxi +1 位作者 Zhang Renbo Du Xiuli 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2022年第4期969-985,共17页
In addition to the normal service loadings,engineering structures may be subjected to occasional loadings such as earthquakes,which may cause severe destruction.When the steel rebar is corroded,the damage could be mor... In addition to the normal service loadings,engineering structures may be subjected to occasional loadings such as earthquakes,which may cause severe destruction.When the steel rebar is corroded,the damage could be more serious.To investigate the seismic performance of corroded RC columns,a three-dimensional mesoscale finite element model was established.In this approach,concrete was considered as a three-phase composite composed of aggregate,mortar matrix and interfacial transition zone(ITZ).The nonlinear spring were used to describe the bond slip between steel and concrete.The degradation of the material properties of the steel rebar and cover concrete as well as the bonding performance due to corrosion were taken into account.The rationality of the developed numerical analysis model was verified by the good agreement between the numerical results and the available experimental observation.On this basis,the effect of corrosion level,axial force ratio and shear-span ratio on the seismic performance of corroded RC columns,including lateral bearing capacity,ductility,and energy consumption,were explored and discussed.The simulation results indicate that the mesoscopic method can consider the heterogeneity of concrete,to more realistically and reasonably reflect the destruction process of structures. 展开更多
关键词 reinforcement corrosion reinforced concrete column MESO-SCALE finite element analysis seismic behavior
下载PDF
Experimental Study of Post-heated Steel Reinforced Recycled Concrete Columns Repaired with CFRP
8
作者 贾璞 董江峰 +1 位作者 YUAN Shucheng 王清远 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第4期901-907,共7页
The mechanical and thermal properties of steel reinforced concrete columns with CFRP reinforcement were examined after exposure to a high temperature of 500℃. The concrete made with normal and recycled coarse aggreg... The mechanical and thermal properties of steel reinforced concrete columns with CFRP reinforcement were examined after exposure to a high temperature of 500℃. The concrete made with normal and recycled coarse aggregate(RCA) was fabricated and three different RCA replacement ratios(0, 50%, and 100%) were investigated. The fatigue properties of steel reinforced concrete with RCA and CFRP reinforcement were tested for two million cycles at a frequency of 2.5 Hz. The test results show that the failure of strengthened specimens is mainly caused by rupture of CFRP jacket and buckling of inner section steel reinforcement. However, for the unstrengthened specimen, both of inner steel buckling and core concrete cracking are the main contributors to the damage. The load-bearing capacity, deformation and energy dissipation of the specimens during the fatigue test could be strengthened greatly by CFRP reinforcement. However, the CFRP reinforcement has little influence on the improvement of the stiffness of the specimens, which may be caused by a plastic damage accumulation during the early cycles of fatigue tests. Finally, a static test was conducted on the postfatigue specimens, the results showed that a large decrease in stiffness was observed for the specimens subjected to high temperature and fatigue, and the fatigue loading had a higher influence on the specimens than the high temperature. 展开更多
关键词 recycled concrete column high temperature CFRP fatigue loading
下载PDF
Axial compressive behaviors of partial deteriorated strength concrete columns confined with CFRP
9
作者 魏华 吴智敏 郭夏 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2010年第3期363-368,共6页
This paper aims to present an effective method to partial deteriorated strength columns,and to investigate the mechanical behavior of the defect part. Five groups of 150×150 mm×mm plain square columns are ca... This paper aims to present an effective method to partial deteriorated strength columns,and to investigate the mechanical behavior of the defect part. Five groups of 150×150 mm×mm plain square columns are cast; each specimen has two different strengths,the lower strength in the middle segment and higher strength in both ends. The lower strength is to simulate the status of partial deteriorated region. Different layers of CFRP sheets have been wrapped just on the lower strength part to gain the reinforcement with CFRP sheets,and to verify the practicability of partial confinement. Specimens are subjected to monotonic axial compression until failure. Axial load,axial and transverse strains are measured to compare the different behaviors between the two parts. Experimental results show that partial confinement can significantly enhance the strength and the ductility of the deteriorated strength part,then,the load capacity of the whole column can be increased subsequently. Test data indicate that the ultimate load of the confined column is higher than that of the original column without deterioration; partial confinement on weakness is a feasible approach. 展开更多
关键词 CFRP concrete column partial deteriorated strength partial confinement
下载PDF
Confinement properties of circular concrete columns wrapped with prefabricated textile-reinforced fine concrete shells
10
作者 Qin ZHANG Qiao-Chu YANG +2 位作者 Xiang-Lin GU Yong JIANG Hai-Yang ZHU 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2023年第10期1554-1570,共17页
This paper proposes an innovative column composed of a core column(including both reinforced concrete(RC)and plain concrete(PC)columns)and a prefabricated textile-reinforced fine concrete(TRC)shell.To study the confin... This paper proposes an innovative column composed of a core column(including both reinforced concrete(RC)and plain concrete(PC)columns)and a prefabricated textile-reinforced fine concrete(TRC)shell.To study the confinement properties of TRC shells on this novel type of concrete column,20 circular specimens,including 12 PC columns and 8 RC columns,were prepared for axial compressive tests.Four key parameters,including the column size,reinforcing ratio of the carbon textile,concrete strength,and stirrup spacing,were evaluated.The results indicated that the compressive properties of the columns were improved by increasing the reinforcing ratio of the textile layers.In the case of TRC-confined PC columns,the maximum improvement in the peak load was 56.3%,and for TRC-confined RC columns,the maximum improvement was 60.2%.Based on the test results,an analytical model that can be used to calculate the stress–strain curves of prefabricated TRC shell-confined concrete columns has been proposed.The calculated curves predicted by the proposed model agreed well with the test results. 展开更多
关键词 textile-reinforced fine concrete prefabricated shell confined concrete column confinement properties stress–strain relationship
原文传递
Reliability analysis of reinforced concrete columns under combined seismic and blast loads
11
作者 SHI YanChao SUN XiaoZhe CUI Jian 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2023年第2期363-377,共15页
It is possible for certain building structures to encounter both the seismic load and blast load during their service life.With the development of the economy and the increase of security demand,the need for design of... It is possible for certain building structures to encounter both the seismic load and blast load during their service life.With the development of the economy and the increase of security demand,the need for design of building structures against multi-hazard is becoming more and more obvious.Therefore,the damage analysis of building structures under the combined action of multiple hazards has become a very urgent requirement for disaster prevention and reduction.In this paper,the refined finite element model of reinforced concrete(RC)columns is established by using the explicit dynamic analysis software LS-DYNA.Combined with the Monte Carlo method,the damage law of RC columns under the combined action of random single earthquake or explosion disaster and multi-hazard is studied,and the damage groups are distinguished according to the damage index.Based on the support vector machine(SVM)algorithm,the dividing line between different damage degree groups is determined,and a rapid method for determining the damage degree of RC columns under the combined seismic and blast loads is proposed.Finally,suggestions for the design of RC column against multi-disaster are put forward. 展开更多
关键词 reliability analysis reinforced concrete(RC)column damage probability seismic load blast load Monte-Carlo method
原文传递
Experimental investigation of seismic performance of concrete-filled glass fiber reinforced polymer tubular columns
12
作者 关宏波 王清湘 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第5期37-43,共7页
A reinforced concrete (RC) column and four concrete filled GFRP tubular columns,which are subjected to combined axial compression and lateral cycle loading,were tested in order to investigate the seismic performance o... A reinforced concrete (RC) column and four concrete filled GFRP tubular columns,which are subjected to combined axial compression and lateral cycle loading,were tested in order to investigate the seismic performance of composite construction concrete filled glass fiber reinforced polymer (GFRP) tubular (CFFT) columns.The results indicated that concrete-filled GFRP tubular columns exhibit considerable influence over the seismic performance of columns by providing hoop confinement to the core concrete.The concrete filled GFRP tubular columns exhibit significant improvement over traditional RC columns in both ultimate strength and ductility.Different column-footing connection modes do not affect the strength and ductility of concrete filled GFRP tubular columns.The strength of concrete filled GFRP tubular columns under high axial compression load conditions are slightly increased,however,ductility declined. 展开更多
关键词 concrete columns CONNECTIONS DUCTILITY concrete filled GFRP tubular column SEISMIC
下载PDF
Effects of Length and Location of Steel Corrosion on the Behavior and Load Capacity of Reinforced Concrete Columns 被引量:3
13
作者 王小惠 刘西拉 邓宝如 《Journal of Shanghai Jiaotong university(Science)》 EI 2012年第4期391-400,共10页
The effects of length and location of the steel corrosion on the structural behavior and load capacity of reinforced concrete (RC) columns have been investigated. Results of the accelerated corrosion process and eccen... The effects of length and location of the steel corrosion on the structural behavior and load capacity of reinforced concrete (RC) columns have been investigated. Results of the accelerated corrosion process and eccentric load test are presented in detail. Effects of the location of the partial length, the corrosion level within partial length and the asymmetrical deterioration of the concrete section on the mechanical behavior and load capacity of corroded RC columns are discussed. It is found that the mechanical behavior and load carrying capacity of corroded RC columns are simultaneously affected by the above mentioned factors. For the corroded RC columns with large eccentricity, a higher corrosion level in the tensile corroded length and a greater asymmetrical deterioration of the concrete section can result in less ductile behavior and larger load reduction of the column; while for the corroded RC columns with small eccentricity, the less ductile behavior and the larger load reduction of the column may result from the higher corrosion level in the compressive corroded length and the greater asymmetrical deterioration of the concrete 展开更多
关键词 reinforced concrete (RC) column CORROSION partial length mechanical behavior load capacity
原文传递
Experimental study on the seismic behavior of high strength concrete fi lled double-tube columns 被引量:12
14
作者 Qian Jiaru Li Ningbo +1 位作者 Ji Xiaodong Zhao Zuozhou 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2014年第1期47-57,共11页
To study the seismic behavior of high strength concrete fi lled double-tube(CFDT) columns,each consisting of an external square steel tube and an internal circular steel tube,quasi-static tests on eight CFDT column sp... To study the seismic behavior of high strength concrete fi lled double-tube(CFDT) columns,each consisting of an external square steel tube and an internal circular steel tube,quasi-static tests on eight CFDT column specimens were conducted.The test variables included the width-to-thickness ratio(β1) and the area ratio(β2) of the square steel tube,the wall thickness of the circular steel tube,and the axial force(or the axial force ratio) applied to the CFDT columns.The test results indicate that for CFDT columns with a square steel tube with β1 of 50.1 and 24.5,local buckling of the specimen was found at a drift ratio of 1/150 and 1/50,respectively.The lateral force-displacement hysteretic loops of all specimens were plump and stable.Reducing the width-to-thickness ratio of the square steel tube,increasing its area ratio,or increasing the wall thickness of the internal circular steel tube,led to an increased fl exural strength and deformation capacity of the specimens.Increasing the design value of the axial force ratio from 0.8 to 1.0 may increase the fl exural strength of the specimens,while it may also decrease the ultimate deformation capacity of the specimen with β1 of 50.1. 展开更多
关键词 high strength concrete fi lled double-tube(CFDT)column seismic behavior area ratio of the square steel tube width-to-thickness ratio of the square steel tube axial force ratio quasi-static test
下载PDF
Experimental study on ductility improvement of reinforced concrete rectangular Columns retrofitted with a new fiber reinforced plastics method 被引量:1
15
作者 刘涛 冯伟 +1 位作者 张智梅 欧阳煜 《Journal of Shanghai University(English Edition)》 CAS 2008年第1期7-14,共8页
Reinforced concrete (RC) columns lacking adequately detailed transverse reinforcement do not possess the necessary ductility to dissipate seismic energy during a major earthquake without severe strength degradation.... Reinforced concrete (RC) columns lacking adequately detailed transverse reinforcement do not possess the necessary ductility to dissipate seismic energy during a major earthquake without severe strength degradation. In this paper, a new retrofit method, which utilized fiber-reinforced plastics (FRP) confinement mechanism and anchorage of embedded bars, was developed aiming to retrofit non-ductile large RC rectangular columns to prevent the damage of the plastic hinges. Carbon FRP (CFRP) sheets and glass FRP (GFRP) bars were used in this test, and five scaled RC columns were tested to examine the function of this new method for improving the ductility of columns. Responses of columns were examined before and after being retrofitted. Test results indicate that this new composite method can be very effective to improve the anti-seismic behavior of non-ductile RC columns compared with normal CFRP sheets retrofitted column. 展开更多
关键词 seismic behavior RETROFIT reinforced concrete (RC) rectangular column DUCTILITY fiber-reinforced plastics (FRP)
下载PDF
Strength and Deformation of Axially Loaded Fiber-Reinforced Polymer Sheet Confined Concrete Columns
16
作者 李静 钱稼茹 蒋剑彪 《Tsinghua Science and Technology》 SCIE EI CAS 2004年第2期130-137,共8页
Experimental results of 29 axially loaded fiber-reinforced polymer sheet (FS) confined concrete columns and two reference plain concrete columns are introduced. Twenty four column specimens were confined with carbon f... Experimental results of 29 axially loaded fiber-reinforced polymer sheet (FS) confined concrete columns and two reference plain concrete columns are introduced. Twenty four column specimens were confined with carbon fiber sheet (CFS) and five column specimens were hybrid confined with both CFS and glass fiber sheet (GFS). The influence of aspect ratio, FS material, initial axial force ratio, and FS confine-ment degree on the strength and deformation of columns were studied. Based on the experimental results, the equations of complete stress-strain curve of CFS confined concrete are proposed. These equations are suitable for the nonlinear analysis of square and rectangular section columns. Suggestions of applying FS to confine concrete columns are presented. 展开更多
关键词 fiber-reinforced polymer sheet (FS) confined concrete column axial compressive force strength and deformation equation of complete stress-strain curve
原文传递
Behavior of eccentrically loaded concrete-filled GFRP tubular short columns
17
作者 王清湘 关宏波 阮冰峰 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第6期127-132,共6页
The glass fiber reinforced polymer (GFRP) tube is an effective material that can increase the bearing capacity and ductility of concrete.To study the mechanical behavior of this composite structure,twenty-one concrete... The glass fiber reinforced polymer (GFRP) tube is an effective material that can increase the bearing capacity and ductility of concrete.To study the mechanical behavior of this composite structure,twenty-one concrete-filled GFRP tubular short columns were tested under an eccentric load.The principle influencing factors,such as the eccentricity ratio,concrete strength and ratio of longitudinal reinforcement were also studied.In addition,the course of deformation,failure mode,and failure mechanism were analyzed by observing the phenomena and summarizing the data.The test results indicated that the strength and deformation characteristics of core concrete increase as a result of the addition of the GFRP tube.However,the gain in strength due to the addition of the GFRP tube decreases as the ratio of e /d increases.An increase in the longitudinal steel ratio can improve the bearing capacity of the composite short column effectively.Furthermore,the study showed that the constraint effect of the GFRP tube on high-strength concrete is not as effective as that on common concrete.The reason is that the lateral deformation of the high-strength concrete is less than that of the common concrete when the concrete column was tested under the same axial compression ratio. 展开更多
关键词 GFRP tube eccentric loading concrete short column composite structure
下载PDF
Experimental and Numerical Studies on Sea Sand Concrete Filled Stainless Steel Tube with Inner FRP Tube Subjected to Axial Compression
18
作者 ZENG Lan YU Wen-lan +2 位作者 MO Zi-yong HUANG Shi-qing YUAN Hong 《China Ocean Engineering》 SCIE EI CSCD 2023年第2期272-287,共16页
Since fibre-reinforced polymer(FRP) and stainless steel(SS) offer advantages of corrosion resistance and hybrid confinement, this study proposed a new type of composite column: sea sand concrete(SSC)-filled SS tubular... Since fibre-reinforced polymer(FRP) and stainless steel(SS) offer advantages of corrosion resistance and hybrid confinement, this study proposed a new type of composite column: sea sand concrete(SSC)-filled SS tubular columns with an inner FRP tube(CFSTFs) to help exploit abundant ocean resources in marine engineering. To study compressive behaviours of these novel members, eight CFSTFs and two SSC-filled SS tubular columns(CFSTs)were tested under axial compression. Their axial load-displacement curves, axial load-strain curves in SS or FRP tubes were obtained, and influences of key test parameters(the existence of glass FRP(GFRP) tubes, steel tube shapes, and GFRP tube thicknesses and diameters) were discussed. Further, specimen failure mechanism was analyzed employing the finite element method using ABAQUS software. Test results confirmed the excellent ductility and load-bearing capacity of CFSTFs. The existence of GFRP tubes inside can postpone SS tube buckling, and the content of inner FRP tubes, particularly increasing diameters, was found to improve compressive behaviours. GFRP contents helped develop the second elastic-plastic stage of the load-displacement curves. Furthermore, the bearing capacity of CFSTFs with a circular cross-section was approximately 26% higher than that with a square cross-section, and this difference narrowed with the increase in GFRP ratios. 展开更多
关键词 sea-sand concrete(SSC) confined concrete column fibre-reinforced polymer(FRP)tube stainless steel tube axial compression
下载PDF
Earthquake simulation test of circular reinforced concrete bridge column under multidirectional seismic excitation 被引量:4
19
作者 Junichi Sakai Shigeki Unjoh 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2006年第1期103-110,共8页
Structures behave multi-directionally when subjected to earthquake excitation. Thus, it is essential to evaluate the effect of multidirectional loading on the dynamic response and seismic performance of reinforced con... Structures behave multi-directionally when subjected to earthquake excitation. Thus, it is essential to evaluate the effect of multidirectional loading on the dynamic response and seismic performance of reinforced concrete bridge columns in order to develop more advanced and reliable design procedures. To investigate such effects, a 1/4 scaled circular reinforced concrete bridge column specimen was tested under two horizontal and one vertical components of a strong motion that has long duration with several strong pulses. Damage progress of reinforced concrete columns subjected to strong excitation was evaluated from the test. The test results demonstrate that the lateral force response in the principal directions become smaller than computed flexural capacity due to the bilateral flexural loading effects, and that the lateral response is not significantly affected by the fluctuation of the axial force because the horizontal response and axial force barely reached the maximum simultaneously due to difference of the predominant natural periods between the vertical and the horizontal directions. Accuracy of fiber analyses is discussed using the test results. 展开更多
关键词 multidirectional seismic excitation reinforced concrete bridge columns shake table test nonlinear dynamic analyses fiber analysis
下载PDF
Experimental investigation on dynamic response and damage models of circular RC columns subjected to underwater explosions 被引量:4
20
作者 Tie-shuan Zhuang Ming-yang Wang +3 位作者 Jun Wu Cheng-yu Yang Tao Zhang Chao Gao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第4期856-875,共20页
Reinforced concrete(RC) columns are widely used as supporting structures for high-piled wharfs.The study of damage model of a RC column due to underwater explosion is a critical issue to assess the wharfs antiknock se... Reinforced concrete(RC) columns are widely used as supporting structures for high-piled wharfs.The study of damage model of a RC column due to underwater explosion is a critical issue to assess the wharfs antiknock security.In this study,the dynamic response and damage model of circular RC columns subjected to underwater explosions were investigated by means of scaled-down experiment models.Experiments were carried out in a 10.0 m diameter tank with the water depth of 2.25 m,under different explosive quantities(0.025 kg-1.6 kg),stand-off distances(0.0 m-7.0 m),and detonation depths(0.25 m-2.0 m).The shock wave load and dynamic response of experiment models were measured by configuring sensors of pressure,acceleration,strain,and displacement.Then,the load distribution characteristics,time history of test data,and damage models related to present conditions were obtained and discussed.Three damage models,including bending failure,bending-shear failure and punching failure,were identified.In addition,the experie nce model of shock wave loads on the surface of a RC column was proposed for engineering application. 展开更多
关键词 Underwater explosion Reinforced concrete(RC)columns Load distribution characteristics Dynamic response Damage models
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部