in order to evaluate the capacity of reinforced concrete (RC) structures subjected to blast Ioadings, the damaged plasticity model for concrete was used in the analysis of the dynamic responses of blast-loaded RC st...in order to evaluate the capacity of reinforced concrete (RC) structures subjected to blast Ioadings, the damaged plasticity model for concrete was used in the analysis of the dynamic responses of blast-loaded RC structures, and all three failure modes were numerically simulated by the finite element software ABAQUS. Simulation results agree with the experimental observations. It is demonstrated that the damaged plasticity model for concrete in the finite element software ABAQUS can predict dynamic responses and typical flexure, flexure-shear and direct shear failure modes of the blast-loaded RC structures.展开更多
A conventional method of damage modeling by a reduction in stiffness is insufficient to model the complex non-linear damage characteristics of concrete material accurately.In this research,the concrete damage plastici...A conventional method of damage modeling by a reduction in stiffness is insufficient to model the complex non-linear damage characteristics of concrete material accurately.In this research,the concrete damage plasticity constitutive model is used to develop the numerical model of a deck beam on a berthing jetty in the Abaqus finite element package.The model constitutes a solid section of 3D hexahedral brick elements for concrete material embedded with 2D quadrilateral surface elements as reinforcements.The model was validated against experimental results of a beam of comparable dimensions in a cited literature.The validated beam model is then used in a three-point load test configuration to demonstrate its applicability for preliminary numerical evaluation of damage detection strategy in marine concrete structural health monitoring.The natural frequency was identified to detect the presence of damage and mode shape curvature was found sensitive to the location of damage.展开更多
This work proposes a unified damage model for concrete within the framework of stochastic damage mechanics. Based on the micro-meso stochastic fracture model(MMSF), the nonlinear energy dissipation process of the micr...This work proposes a unified damage model for concrete within the framework of stochastic damage mechanics. Based on the micro-meso stochastic fracture model(MMSF), the nonlinear energy dissipation process of the microspring from nanoscale to microscale is investigated. In nanoscale, the rate process theory is adopted to describe the crack growth rate;therefore, the corresponding energy dissipation caused by a representative crack propagation can be obtained. The scale gap from nanoscale to microscale is bridged by a crack hierarchy model. Thus, the total energy dissipated by all cracks from the nanoscale to the microscale is gained. It is found that the fracture strain of the microspring can be derived from the above multi-scale energy dissipation analysis. When energy dissipation is regarded as some microdamage to the microspring, the constitutive law of the microspring is no longer linearly elastic, as previously assumed. By changing the expression of the damage evolution law from fracture strain to energy dissipation threshold, the new damage evolution model is derived. The proposed model can not only replicate the original static model but also extend to cases of rate dependence. By deriving the fracture strain under different strain rates, the rate sensitivity of concrete materials can be reflected. The model parameters can be conveniently obtained by identifying them with experimental data. Finally, several numerical examples are presented to verify the proposed model.展开更多
The dynamic characteristics and failure modes of steel reinforced concrete (SRC) columns subjected to blast loading are complicated because of the transient stress wave in the SRC columns and the interaction between s...The dynamic characteristics and failure modes of steel reinforced concrete (SRC) columns subjected to blast loading are complicated because of the transient stress wave in the SRC columns and the interaction between steel and concrete. This paper presents a numerical simulation of the response of SRC columns subjected to blast loading using hydrocode LS-DYNA. In the numerical model, a sophisticate concrete material model (the Concrete Damage Model) is employed with consideration of the strain rate effect and the damage accumulation. An erosion technique is adopted to model the spalling process of concrete. The possible failure modes of SRC columns are evaluated. It is observed that the failure of SRC columns subjected to blast load can generally be classified into three modes, namely, a direct failure in concrete body due to the stress wave, a transverse shear failure near the support sections due to the high shear force, and a flexural failure pertaining to large local and global deformation of the reinforcing steel.展开更多
A combined dam structure using different concrete materials offers many practical benefits.There are several real-world cases where largevolume heterogeneous concrete materials have been used together.From the enginee...A combined dam structure using different concrete materials offers many practical benefits.There are several real-world cases where largevolume heterogeneous concrete materials have been used together.From the engineering design standpoint,it is crucial to understand the deformation coordination characteristics and mechanical properties of large-volume heterogeneous concrete,which affect dam safety and stability.In this study,a large dam facility was selected for a case study,and various design schemes of the combined dam structure were developed by changing the configurations of material zoning and material types for a given dam shape.Elastoplastic analysis of the damfoundation-reservoir system for six schemes was carried out under dynamic conditions,in which the concrete damaged plasticity(CDP)model,the Lagrangian finite element formulation,and a surface-to-surface contact model were utilized.To evaluate the mechanical properties of zoning interfaces and coordination characteristics,the vertical distribution of the first principal stress at the longitudinal joint was used as the critical index of deformation coordination control,and the overall deformation and damage characteristics of the dam were also investigated.Through a comparative study of the design schemes,an optimal scheme of the combined dam structure was identified:large-volume roller-compacted concrete(RCC)is recommended for the dam body upstream of the longitudinal joint,and high-volume fly ash conventional concrete(CC)for the dam body downstream of the longitudinal joint.This study provides engineers with a reference basis for combined dam structure design.展开更多
基金Supported by National Natural Science Foundation of China (No.50638030 and 50525825)National Science and Technology Support Program (No.2006BAJ13B02).
文摘in order to evaluate the capacity of reinforced concrete (RC) structures subjected to blast Ioadings, the damaged plasticity model for concrete was used in the analysis of the dynamic responses of blast-loaded RC structures, and all three failure modes were numerically simulated by the finite element software ABAQUS. Simulation results agree with the experimental observations. It is demonstrated that the damaged plasticity model for concrete in the finite element software ABAQUS can predict dynamic responses and typical flexure, flexure-shear and direct shear failure modes of the blast-loaded RC structures.
文摘A conventional method of damage modeling by a reduction in stiffness is insufficient to model the complex non-linear damage characteristics of concrete material accurately.In this research,the concrete damage plasticity constitutive model is used to develop the numerical model of a deck beam on a berthing jetty in the Abaqus finite element package.The model constitutes a solid section of 3D hexahedral brick elements for concrete material embedded with 2D quadrilateral surface elements as reinforcements.The model was validated against experimental results of a beam of comparable dimensions in a cited literature.The validated beam model is then used in a three-point load test configuration to demonstrate its applicability for preliminary numerical evaluation of damage detection strategy in marine concrete structural health monitoring.The natural frequency was identified to detect the presence of damage and mode shape curvature was found sensitive to the location of damage.
基金supported by the National Natural Science Foundation of China(Grant No. 51538010)。
文摘This work proposes a unified damage model for concrete within the framework of stochastic damage mechanics. Based on the micro-meso stochastic fracture model(MMSF), the nonlinear energy dissipation process of the microspring from nanoscale to microscale is investigated. In nanoscale, the rate process theory is adopted to describe the crack growth rate;therefore, the corresponding energy dissipation caused by a representative crack propagation can be obtained. The scale gap from nanoscale to microscale is bridged by a crack hierarchy model. Thus, the total energy dissipated by all cracks from the nanoscale to the microscale is gained. It is found that the fracture strain of the microspring can be derived from the above multi-scale energy dissipation analysis. When energy dissipation is regarded as some microdamage to the microspring, the constitutive law of the microspring is no longer linearly elastic, as previously assumed. By changing the expression of the damage evolution law from fracture strain to energy dissipation threshold, the new damage evolution model is derived. The proposed model can not only replicate the original static model but also extend to cases of rate dependence. By deriving the fracture strain under different strain rates, the rate sensitivity of concrete materials can be reflected. The model parameters can be conveniently obtained by identifying them with experimental data. Finally, several numerical examples are presented to verify the proposed model.
文摘The dynamic characteristics and failure modes of steel reinforced concrete (SRC) columns subjected to blast loading are complicated because of the transient stress wave in the SRC columns and the interaction between steel and concrete. This paper presents a numerical simulation of the response of SRC columns subjected to blast loading using hydrocode LS-DYNA. In the numerical model, a sophisticate concrete material model (the Concrete Damage Model) is employed with consideration of the strain rate effect and the damage accumulation. An erosion technique is adopted to model the spalling process of concrete. The possible failure modes of SRC columns are evaluated. It is observed that the failure of SRC columns subjected to blast load can generally be classified into three modes, namely, a direct failure in concrete body due to the stress wave, a transverse shear failure near the support sections due to the high shear force, and a flexural failure pertaining to large local and global deformation of the reinforcing steel.
基金supported by the National Natural Science Foundation of China(Grant No.51879185)the Fund of the National Dam Safety Research Center(Grant No.CX2019B02).
文摘A combined dam structure using different concrete materials offers many practical benefits.There are several real-world cases where largevolume heterogeneous concrete materials have been used together.From the engineering design standpoint,it is crucial to understand the deformation coordination characteristics and mechanical properties of large-volume heterogeneous concrete,which affect dam safety and stability.In this study,a large dam facility was selected for a case study,and various design schemes of the combined dam structure were developed by changing the configurations of material zoning and material types for a given dam shape.Elastoplastic analysis of the damfoundation-reservoir system for six schemes was carried out under dynamic conditions,in which the concrete damaged plasticity(CDP)model,the Lagrangian finite element formulation,and a surface-to-surface contact model were utilized.To evaluate the mechanical properties of zoning interfaces and coordination characteristics,the vertical distribution of the first principal stress at the longitudinal joint was used as the critical index of deformation coordination control,and the overall deformation and damage characteristics of the dam were also investigated.Through a comparative study of the design schemes,an optimal scheme of the combined dam structure was identified:large-volume roller-compacted concrete(RCC)is recommended for the dam body upstream of the longitudinal joint,and high-volume fly ash conventional concrete(CC)for the dam body downstream of the longitudinal joint.This study provides engineers with a reference basis for combined dam structure design.