Seismic responses of the Zipingpu concrete face rockfill dam were analyzed using the finite element method. The dynamic behavior of rockfill materials was modeled with a viscoelastic model and an empirical permanent s...Seismic responses of the Zipingpu concrete face rockfill dam were analyzed using the finite element method. The dynamic behavior of rockfill materials was modeled with a viscoelastic model and an empirical permanent strain model. The relevant parameters were obtained either by back analysis using the field observations or by reference to parameters of similar rockfill materials. The acceleration responses of the dam,the distribution of earthquake-induced settlement, and the gap propagation under the concrete slabs caused by the settlement of the dam were analyzed and compared with site investigations or relevant studies. The mechanism of failure of horizontal construction joints was also analyzed based on numerical results and site observations. Numerical results show that the input accelerations were considerably amplified near the top of the dam, and the strong shaking resulted in considerable settlement of the rockfill materials, with a maximum value exceeding 90 cm at the crest.As a result of the settlement of rockfill materials, the third-stage concrete slabs were separated from the cushion layer. The rotation of the cantilever slabs about the contacting regions, under the combined action of gravity and seismic inertial forces, led to the failure of the construction joints and tensile cracks appeared above the construction joints. The effectiveness and limitations of the so-called equivalent linear method are also discussed.展开更多
A simplified physically-based model was developed to simulate the breaching process of the Gouhou concrete-faced rockfill dam (CFRD), which is the only breach case of a high CFRD in the world. Considering the dam he...A simplified physically-based model was developed to simulate the breaching process of the Gouhou concrete-faced rockfill dam (CFRD), which is the only breach case of a high CFRD in the world. Considering the dam height, a hydraulic method was chosen to simulate the initial scour position on the downstream slope, with the steepening of the downstream slope taken into account; a headcut erosion formula was adopted to simulate the backward erosion as well. The moment equilibrium method was utilized to calculate the ultimate length of a concrete slab under its self-weight and water loads. The calculated results of the Gouhou CFRD breach case show that the proposed model provides reasonable peak breach flow, final breach width, and failure time, with relative errors less than 15% as compared with the measured data. Sensitivity studies show that the outputs of the proposed model are more or less sensitive to different parameters. Three typical parametric models were compared with the proposed model, and the comparison demonstrates that the proposed physically-based breach model performs better and provides more detailed results than the parametric models.展开更多
This research focused on the three-dimensional(3 D) seepage field simulation of a high concrete-faced rockfill dam(CFRD) under complex hydraulic conditions. A generalized equivalent continuum model of fractured rock m...This research focused on the three-dimensional(3 D) seepage field simulation of a high concrete-faced rockfill dam(CFRD) under complex hydraulic conditions. A generalized equivalent continuum model of fractured rock mass was used for equivalent continuous seepage field analysis based on the improved node virtual flow method. Using a high CFRD as an example, the generalized equivalent continuum range was determined, and a finite element model was established based on the terrain and geological conditions, as well as structural face characteristics of the dam area. The equivalent seepage coefficients of different material zones or positions in the dam foundation were calculated with the Snow model or inverse analysis. Then, the 3 D seepage field in the dam area was calculated under the normal water storage conditions, and the corresponding water head distribution, seepage flow, seepage gradient, and seepage characteristics in the dam area were analyzed. The results show that the generalized equivalent continuum model can effectively simulate overall seepage patterns of the CFRD under complex hydraulic conditions and provide a reference for seepage analysis of similar CFRDs.展开更多
This paper deals with the estimation of crest settlement in a concrete face rockfill dam (CFRD), utilizing intelligent methods. Following completion of dam construction, considerable movements of the crest and the b...This paper deals with the estimation of crest settlement in a concrete face rockfill dam (CFRD), utilizing intelligent methods. Following completion of dam construction, considerable movements of the crest and the body of the dam can develop during the first impoundment of the reservoir. Although there is vast experience worldwide in CFRD design and construction, few accurate experimental relationships are available to predict the settlement in CFRD. The goal is to advance the development of intelligent methods to estimate the subsidence of dams at the design stage. Due to dam zonifieation and uncertainties in material properties, these methods appear to be the appropriate choice. In this study, the crest settlement behavior of CFRDs is analyzed based on compiled data of 24 CFRDs constructed during recent years around the world, along with the utilization of gene ex- pression programming (GEP) and adaptive neuro-fuzzy inference system (ANFIS) methods. In addition, dam height (H), shape factor (St), and time (t, time after first operation) are also assessed, being considered major factors in predicting the settlement behavior. From the relationships proposed, the values ofR2 for both equations of GEP (with and without constant) were 0.9603 and 0.9734, and for the three approaches of ANFIS (grid partitioning (GP), subtractive clustering method (SCM), and fuzzy c-means clustering (FCM)) were 0.9693, 0.8657, and 0.8848, respectively. The obtained results indicate that the overall behavior evaluated by this approach is consistent with the measured data of other CFRDs.展开更多
基金supported by the National Natural Science Foundation of China(Grants No.91215301 and 51309161)the Scientific Research Fund of the Nanjing Hydraulic Research Institute(Grants No.Y314011 and Y315005)
文摘Seismic responses of the Zipingpu concrete face rockfill dam were analyzed using the finite element method. The dynamic behavior of rockfill materials was modeled with a viscoelastic model and an empirical permanent strain model. The relevant parameters were obtained either by back analysis using the field observations or by reference to parameters of similar rockfill materials. The acceleration responses of the dam,the distribution of earthquake-induced settlement, and the gap propagation under the concrete slabs caused by the settlement of the dam were analyzed and compared with site investigations or relevant studies. The mechanism of failure of horizontal construction joints was also analyzed based on numerical results and site observations. Numerical results show that the input accelerations were considerably amplified near the top of the dam, and the strong shaking resulted in considerable settlement of the rockfill materials, with a maximum value exceeding 90 cm at the crest.As a result of the settlement of rockfill materials, the third-stage concrete slabs were separated from the cushion layer. The rotation of the cantilever slabs about the contacting regions, under the combined action of gravity and seismic inertial forces, led to the failure of the construction joints and tensile cracks appeared above the construction joints. The effectiveness and limitations of the so-called equivalent linear method are also discussed.
基金supported by the National Natural Science Foundation of China(Grants No.51779153,51539006,and 51509156)the Natural Science Foundation of Jiangsu Province(Grant No.BK20161121)
文摘A simplified physically-based model was developed to simulate the breaching process of the Gouhou concrete-faced rockfill dam (CFRD), which is the only breach case of a high CFRD in the world. Considering the dam height, a hydraulic method was chosen to simulate the initial scour position on the downstream slope, with the steepening of the downstream slope taken into account; a headcut erosion formula was adopted to simulate the backward erosion as well. The moment equilibrium method was utilized to calculate the ultimate length of a concrete slab under its self-weight and water loads. The calculated results of the Gouhou CFRD breach case show that the proposed model provides reasonable peak breach flow, final breach width, and failure time, with relative errors less than 15% as compared with the measured data. Sensitivity studies show that the outputs of the proposed model are more or less sensitive to different parameters. Three typical parametric models were compared with the proposed model, and the comparison demonstrates that the proposed physically-based breach model performs better and provides more detailed results than the parametric models.
基金supported by the National Natural Science Youth Foundation of China(Grant No.51309101)the Henan Province Major Scientific and Technological Projects(Grant No.172102210372)the Cooperative Project of Production,Teaching and Research in Henan Province(Grant No.18210700031)
文摘This research focused on the three-dimensional(3 D) seepage field simulation of a high concrete-faced rockfill dam(CFRD) under complex hydraulic conditions. A generalized equivalent continuum model of fractured rock mass was used for equivalent continuous seepage field analysis based on the improved node virtual flow method. Using a high CFRD as an example, the generalized equivalent continuum range was determined, and a finite element model was established based on the terrain and geological conditions, as well as structural face characteristics of the dam area. The equivalent seepage coefficients of different material zones or positions in the dam foundation were calculated with the Snow model or inverse analysis. Then, the 3 D seepage field in the dam area was calculated under the normal water storage conditions, and the corresponding water head distribution, seepage flow, seepage gradient, and seepage characteristics in the dam area were analyzed. The results show that the generalized equivalent continuum model can effectively simulate overall seepage patterns of the CFRD under complex hydraulic conditions and provide a reference for seepage analysis of similar CFRDs.
文摘This paper deals with the estimation of crest settlement in a concrete face rockfill dam (CFRD), utilizing intelligent methods. Following completion of dam construction, considerable movements of the crest and the body of the dam can develop during the first impoundment of the reservoir. Although there is vast experience worldwide in CFRD design and construction, few accurate experimental relationships are available to predict the settlement in CFRD. The goal is to advance the development of intelligent methods to estimate the subsidence of dams at the design stage. Due to dam zonifieation and uncertainties in material properties, these methods appear to be the appropriate choice. In this study, the crest settlement behavior of CFRDs is analyzed based on compiled data of 24 CFRDs constructed during recent years around the world, along with the utilization of gene ex- pression programming (GEP) and adaptive neuro-fuzzy inference system (ANFIS) methods. In addition, dam height (H), shape factor (St), and time (t, time after first operation) are also assessed, being considered major factors in predicting the settlement behavior. From the relationships proposed, the values ofR2 for both equations of GEP (with and without constant) were 0.9603 and 0.9734, and for the three approaches of ANFIS (grid partitioning (GP), subtractive clustering method (SCM), and fuzzy c-means clustering (FCM)) were 0.9693, 0.8657, and 0.8848, respectively. The obtained results indicate that the overall behavior evaluated by this approach is consistent with the measured data of other CFRDs.