In recent years, precast segmental concrete bridge columns became prevalent because of the benefits of accelerated construction, low environmental impact, high quality and low life cycle costs. The lack of a detailed ...In recent years, precast segmental concrete bridge columns became prevalent because of the benefits of accelerated construction, low environmental impact, high quality and low life cycle costs. The lack of a detailed configuration and appropriate design procedure to ensure a comparable performance with monolithic construction has impeded this structural system from being widely used in areas of high seismicity. In this study, precast segmental bridge column cyclic loading tests were conducted to investigate the performance of unbonded post-tensioned segmental bridge columns. One monolithic and two precast segmental columns were tested. The preeast segmental column exhibited minor damage and small residual displacement after the maximum 7% cyclic drift; energy dissipation (ED) can be enhanced byadding ED bars. The experimental results were modeled by a simplified pushover method (SPOM), as well as a fiber model (FIBM) finite element method. Forty-five cases of columns with different aspect ratios, axial load ratios and ED bar ratios were analyzed with the SPOM and FIBM, respectively. Using these parametric results, a simplified design method was suggested by regressive analysis. Satisfactory correlation was found between the experimental results and the simplified design method for preeast segmental columns with different design parameters.展开更多
With the overwhelming number of older reinforced concrete buildings that need to be assessed for seismic vulnerability in a city,local governments face the question of how to assess their building inventory.By leverag...With the overwhelming number of older reinforced concrete buildings that need to be assessed for seismic vulnerability in a city,local governments face the question of how to assess their building inventory.By leveraging engineering drawings that are stored in a digital format,a well-established method for classification reinforced concrete buildings with respect to seismic vulnerability,and machine learning techniques,we have developed a technique to automatically extract quantitative information from the drawings to classify vulnerability.Using this technique,stakeholders will be able to rapidly classify buildings according to their seismic vulnerability and have access to information they need to prioritize a large building inventory.The approach has the potential to have significant impact on our ability to rapidly make decisions related to retrofit and improvements in our communities.In the Los Angeles County alone it is estimated that several thousand buildings of this type exist.The Hassan index is adopted here as the method for automation due to its simple application during the classification of the vulnerable reinforced concrete buildings.This paper will present the technique used for automating information extraction to compute the Hassan index for a large building inventory.展开更多
In functionally graded materials (FGM), the problem of interface stability caused by the volume deformation is commonly regarded as the key factor for its performance. Based on test results, in terms of finite element...In functionally graded materials (FGM), the problem of interface stability caused by the volume deformation is commonly regarded as the key factor for its performance. Based on test results, in terms of finite element method (FEM) this paper analyzed problems in the shrinkage of functionally graded material interface of shield concrete segment, which was designed and produced by the principle of functionally graded materials. In the analysis model, the total shrinkage of concrete was converted into the thermal shrinkage by means of the method of 'Equivalent Temperature Difference'. Consequently, the shrinkage stress of interface layer was calculated and compared with the bond strength of interface layer. The results indicated that the volume deformation of two-phase materials of functionally graded concrete (FGC) segment, which were the concrete cover and the concrete structure layer, showed better compatibility and the tension stress of interface layer, which was resulted from the shrinkage of concrete and calculated by ANSYS, was less than the bond strength of interface layer. Therefore, the interface stability of functionally graded concrete segment was good and the sliding deformation of interface layer would not generate.展开更多
The influence of polypropylene fiber on the flexural fatigue performance of high-strength concrete (HSC), which could be used as cover of reinforcement of segment, was investigate by three-point load bending tests. Al...The influence of polypropylene fiber on the flexural fatigue performance of high-strength concrete (HSC), which could be used as cover of reinforcement of segment, was investigate by three-point load bending tests. Also, the flexural fatigue equations of high-strength concrete with and without polypropylene fiber were established through test analysis. The experimental results indicate that the addition of polypropylene fiber can improve the static bending strength of segment concrete, and the important is that it can markedly increase the flexural fatigue performance of the HSC subjected to cyclic bending load. Especially when with 1.37 kg/m3 addition of the fiber was corporate with silica fume and slag powder, the fatigue life of the HSC can be increased by 43.4% compared to that of the segment concrete without fiber, silica fume and slag.展开更多
The hydration characteristics of pre-cast concrete considering the effects of effective initial steam-curing and water-curing duration were measured and analyzed with XRD, TG, X-ray CT, SEM-BSE and MIP techniques. The...The hydration characteristics of pre-cast concrete considering the effects of effective initial steam-curing and water-curing duration were measured and analyzed with XRD, TG, X-ray CT, SEM-BSE and MIP techniques. The results show that the effective initial steam-curing duration for pre-cast concrete with lower water-binder ratio was 10 14 h at 50 °C and the initial water-curing duration was 7 14 d. And the hydration evolution of cement, fly ash and slag in pre-cast concrete was obtained respectively by combining the hydrochlorides and EDTA selecting dissolution methods, based on which the contents of hydrated and anhydrate in concrete were calculated and the corresponding dynamic capillary porosity was also determined. Moreover, the comparison between calculated results and experimental ones indicates that the proposed evolution models of microscopic characteristics corresponding to hydration kinetics of cemented materials could be adopted to predict the developing trend of capillary porosity and hydration-products content in pre-cast concrete with fly ash and slag under certain curing conditions.展开更多
The comparative research on the seismic performance of grouted sleeve connected pier(GS)and prestressed precast segmental concrete pier(PC)is mostly carried out by numerical simulation.In this study,the GS pier and th...The comparative research on the seismic performance of grouted sleeve connected pier(GS)and prestressed precast segmental concrete pier(PC)is mostly carried out by numerical simulation.In this study,the GS pier and the PC pier of the new railway project from Hetian to Ruoqiang are taken into consideration.Two kinds of 1/5-scale assembled double-column specimens are made,and the quasi-static tests are carried out.The overall seismic performance of the two spliced piers is studied,and compared in terms of failure mechanism,bearing capacity,ductility,stiffness and energy dissipation capacity.The results show that the failure modes of both GS pier and PC pier are characterized by bending.However,the specific failure location and form are different.The GS pier presents a complete hysteretic curve,large equivalent stiffness and strong energy dissipation capacity.The hysteretic area of the PC pier is small.However,it has good self-reset ability and quasi-static residual displacement.Finite element models are set up using DispBeamColumn fiber elements and ZeroLength elements.The models that are calibrated with the test data can effectively simulate the damage development under monotonic loading.The load−displacement curves are in good agreement with the backbone curves of the test results.展开更多
Temperature field and its variation with time are necessary for analyzing the thermo-mechanical performance of mass concrete structures at their early ages. This paper carries out a temperature field simulation analys...Temperature field and its variation with time are necessary for analyzing the thermo-mechanical performance of mass concrete structures at their early ages. This paper carries out a temperature field simulation analysis for an original segment of a real box girder bridge with the finite element software ANSYS. Two representative exothermic rate models are used to describe the heat- releasing process caused by the cement hydration in concrete. The exothermic rate model that conforms to reality more closely is recognized by comparing the simulation results with the data gathered from the optical fiber temperature sensors pre-embedded in the original segment. The air temperature and wind velocity that constitute thermal boundary conditions are determined in the light of the local meteorological department and correlative research achievements of recent years. Moreover, the consideration for the steel formwork acting as a barrier to heat loss is also proved to be beneficial to improve the simulation effect.展开更多
Concrete exterior quality is one of the important metrics in evaluating construction project quality.Among the defects affecting concrete exterior quality,bughole is one of the most common imperfections,thus detecting...Concrete exterior quality is one of the important metrics in evaluating construction project quality.Among the defects affecting concrete exterior quality,bughole is one of the most common imperfections,thus detecting concrete bughole accurately is significant for improving concrete exterior quality and consequently the quality of the whole project.This paper presents a deep learning-based method for detecting concrete surface bugholes in a more objective and automatic way.The bugholes are identified in concrete surface images by Mask R-CNN.An evaluation metric is developed to indicate the scale of concrete bughole.The proposed approach can detect bugholes in an instance level automatically and output the mask of each bughole,based on which the bughole area ratio is automatically calculated and the quality grade of the concrete surfaces is assessed.For demonstration,a total of 273 raw concrete surface images taken by mobile phone cameras are collected as a dataset.The test results show that the average precision(AP)of bughole masks is 90.8%.展开更多
To solve the problem that the digital image recognition accuracy of concrete structure cracks is not high under the condition of uneven ill umination and complex surface color of concrete structure,this paper has prop...To solve the problem that the digital image recognition accuracy of concrete structure cracks is not high under the condition of uneven ill umination and complex surface color of concrete structure,this paper has proposed a block segmentation method of maximum entropy threshold based on the digital image data obtained by the ACTIS automatic detection system.The steps in this research are as follows:1.The crack digital images of concrete specimens with typical fea-tures were collected by using the Actis system of KURABO Co,Ltd,of Japan in the concrete beam bending test.2.The images are segmented into blocks to dis-tinguish backgrounds of different grayscale.3.The max imum interclass average gray difference method is used to distinguish the sub-blocks and screen out the image blocks that need to be segmented.4.Segmentation is made to the image with 2D max imum entropy threshold segmentation method to obtain the binary image,and the target image can be obtained by screening the connected domain features of the binary image.Results have shown that compared with other algo-rithms,the proposed method can effectively decrease the image over-segmentation and under segmentation rates,highlight the characteristics of the target cracks,solve the problems of excessive difference between the identified length and actual length of cracks caused by background gray level change and uneven ilumnination,and effectively improve the recognition accuracy of bridge concrete cracks.展开更多
Considering the desirable behavior of concrete filled steel tube(CFT)columns and the complicated behavior of segmental double-column piers under cyclic loads,three post-tensioned precast segmental CFT double-column pi...Considering the desirable behavior of concrete filled steel tube(CFT)columns and the complicated behavior of segmental double-column piers under cyclic loads,three post-tensioned precast segmental CFT double-column pier specimens were tested to extend their application in moderate and high seismicity areas.The effects of the number of CFT segments and the steel endplates as energy dissipaters on the seismic behavior of the piers were evaluated.The experimental results show that the segmental piers exhibited stable hysteretic behavior with small residual displacements under cyclic loads.All the tested specimens achieved a drift ratio no less than 13%without significant damage and strength deterioration due to the desirable behavior of CFT columns.Since the deformation of segmental columns was mainly concentrated at the column-footing interfaces,the increase of the segment numbers for each column had no obvious effects on the loading capacity but reduced the initial stiffness of the specimens.The use of steel endplates improved the bearing capacity,stiffness and energy dissipation of segmental piers,but weakened their self-centering capacity.Fiber models were also proposed to simulate the hysteretic behavior of the tested specimens,and the influences of segment numbers and prestress levels on seismic behavior were further studied.展开更多
基金National Natural Science Foundation of China under Grants Nos.51208268 and 51178429K.C.Wong Magna Fund in Ningbo University+1 种基金Transportation Science and Technology Project of Ningbo City under Grant No.201507Natural Science Foundation of Ningbo City under Grant No.2015A610293
文摘In recent years, precast segmental concrete bridge columns became prevalent because of the benefits of accelerated construction, low environmental impact, high quality and low life cycle costs. The lack of a detailed configuration and appropriate design procedure to ensure a comparable performance with monolithic construction has impeded this structural system from being widely used in areas of high seismicity. In this study, precast segmental bridge column cyclic loading tests were conducted to investigate the performance of unbonded post-tensioned segmental bridge columns. One monolithic and two precast segmental columns were tested. The preeast segmental column exhibited minor damage and small residual displacement after the maximum 7% cyclic drift; energy dissipation (ED) can be enhanced byadding ED bars. The experimental results were modeled by a simplified pushover method (SPOM), as well as a fiber model (FIBM) finite element method. Forty-five cases of columns with different aspect ratios, axial load ratios and ED bar ratios were analyzed with the SPOM and FIBM, respectively. Using these parametric results, a simplified design method was suggested by regressive analysis. Satisfactory correlation was found between the experimental results and the simplified design method for preeast segmental columns with different design parameters.
基金US National Science Foundation under Grant No.NSF-OAC-1835473。
文摘With the overwhelming number of older reinforced concrete buildings that need to be assessed for seismic vulnerability in a city,local governments face the question of how to assess their building inventory.By leveraging engineering drawings that are stored in a digital format,a well-established method for classification reinforced concrete buildings with respect to seismic vulnerability,and machine learning techniques,we have developed a technique to automatically extract quantitative information from the drawings to classify vulnerability.Using this technique,stakeholders will be able to rapidly classify buildings according to their seismic vulnerability and have access to information they need to prioritize a large building inventory.The approach has the potential to have significant impact on our ability to rapidly make decisions related to retrofit and improvements in our communities.In the Los Angeles County alone it is estimated that several thousand buildings of this type exist.The Hassan index is adopted here as the method for automation due to its simple application during the classification of the vulnerable reinforced concrete buildings.This paper will present the technique used for automating information extraction to compute the Hassan index for a large building inventory.
文摘In functionally graded materials (FGM), the problem of interface stability caused by the volume deformation is commonly regarded as the key factor for its performance. Based on test results, in terms of finite element method (FEM) this paper analyzed problems in the shrinkage of functionally graded material interface of shield concrete segment, which was designed and produced by the principle of functionally graded materials. In the analysis model, the total shrinkage of concrete was converted into the thermal shrinkage by means of the method of 'Equivalent Temperature Difference'. Consequently, the shrinkage stress of interface layer was calculated and compared with the bond strength of interface layer. The results indicated that the volume deformation of two-phase materials of functionally graded concrete (FGC) segment, which were the concrete cover and the concrete structure layer, showed better compatibility and the tension stress of interface layer, which was resulted from the shrinkage of concrete and calculated by ANSYS, was less than the bond strength of interface layer. Therefore, the interface stability of functionally graded concrete segment was good and the sliding deformation of interface layer would not generate.
基金Funded by the National "863" Program (No.2005AA332010)
文摘The influence of polypropylene fiber on the flexural fatigue performance of high-strength concrete (HSC), which could be used as cover of reinforcement of segment, was investigate by three-point load bending tests. Also, the flexural fatigue equations of high-strength concrete with and without polypropylene fiber were established through test analysis. The experimental results indicate that the addition of polypropylene fiber can improve the static bending strength of segment concrete, and the important is that it can markedly increase the flexural fatigue performance of the HSC subjected to cyclic bending load. Especially when with 1.37 kg/m3 addition of the fiber was corporate with silica fume and slag powder, the fatigue life of the HSC can be increased by 43.4% compared to that of the segment concrete without fiber, silica fume and slag.
基金Project(51308308) supported by the National Natural Science Foundation of ChinaProject(LQ12E08002) supported by the Natural Science Foundation of Zhejiang Province,China+3 种基金Project(2012A610159) supported by the Natural Science Foundation of Ningbo City,ChinaProjects(XKL11D2081,zj1113) Subject Program of Ningbo University,ChinaProject(2010R50034) supported by the Key Science and Technology Innovation Team Program of Zhejiang Province,ChinaProject supported by K.C Wong Magna Fund in Ningbo University
文摘The hydration characteristics of pre-cast concrete considering the effects of effective initial steam-curing and water-curing duration were measured and analyzed with XRD, TG, X-ray CT, SEM-BSE and MIP techniques. The results show that the effective initial steam-curing duration for pre-cast concrete with lower water-binder ratio was 10 14 h at 50 °C and the initial water-curing duration was 7 14 d. And the hydration evolution of cement, fly ash and slag in pre-cast concrete was obtained respectively by combining the hydrochlorides and EDTA selecting dissolution methods, based on which the contents of hydrated and anhydrate in concrete were calculated and the corresponding dynamic capillary porosity was also determined. Moreover, the comparison between calculated results and experimental ones indicates that the proposed evolution models of microscopic characteristics corresponding to hydration kinetics of cemented materials could be adopted to predict the developing trend of capillary porosity and hydration-products content in pre-cast concrete with fly ash and slag under certain curing conditions.
基金Project(N2018G034)supported by China Railway Corporation。
文摘The comparative research on the seismic performance of grouted sleeve connected pier(GS)and prestressed precast segmental concrete pier(PC)is mostly carried out by numerical simulation.In this study,the GS pier and the PC pier of the new railway project from Hetian to Ruoqiang are taken into consideration.Two kinds of 1/5-scale assembled double-column specimens are made,and the quasi-static tests are carried out.The overall seismic performance of the two spliced piers is studied,and compared in terms of failure mechanism,bearing capacity,ductility,stiffness and energy dissipation capacity.The results show that the failure modes of both GS pier and PC pier are characterized by bending.However,the specific failure location and form are different.The GS pier presents a complete hysteretic curve,large equivalent stiffness and strong energy dissipation capacity.The hysteretic area of the PC pier is small.However,it has good self-reset ability and quasi-static residual displacement.Finite element models are set up using DispBeamColumn fiber elements and ZeroLength elements.The models that are calibrated with the test data can effectively simulate the damage development under monotonic loading.The load−displacement curves are in good agreement with the backbone curves of the test results.
基金The Soft Science Foundation of Ministry of Construction of China (No.06-k3-14)
文摘Temperature field and its variation with time are necessary for analyzing the thermo-mechanical performance of mass concrete structures at their early ages. This paper carries out a temperature field simulation analysis for an original segment of a real box girder bridge with the finite element software ANSYS. Two representative exothermic rate models are used to describe the heat- releasing process caused by the cement hydration in concrete. The exothermic rate model that conforms to reality more closely is recognized by comparing the simulation results with the data gathered from the optical fiber temperature sensors pre-embedded in the original segment. The air temperature and wind velocity that constitute thermal boundary conditions are determined in the light of the local meteorological department and correlative research achievements of recent years. Moreover, the consideration for the steel formwork acting as a barrier to heat loss is also proved to be beneficial to improve the simulation effect.
基金This work is supported by Chongqing Municipal Natural Science Foundation(Grant Nos.cstc2021jcyj-bsh0189 and cstc2019jcyj-bshX0070)Chongqing Jiulongpo District Science and Technology Planning Project(Grant No.2020-01-001-Y).
文摘Concrete exterior quality is one of the important metrics in evaluating construction project quality.Among the defects affecting concrete exterior quality,bughole is one of the most common imperfections,thus detecting concrete bughole accurately is significant for improving concrete exterior quality and consequently the quality of the whole project.This paper presents a deep learning-based method for detecting concrete surface bugholes in a more objective and automatic way.The bugholes are identified in concrete surface images by Mask R-CNN.An evaluation metric is developed to indicate the scale of concrete bughole.The proposed approach can detect bugholes in an instance level automatically and output the mask of each bughole,based on which the bughole area ratio is automatically calculated and the quality grade of the concrete surfaces is assessed.For demonstration,a total of 273 raw concrete surface images taken by mobile phone cameras are collected as a dataset.The test results show that the average precision(AP)of bughole masks is 90.8%.
文摘To solve the problem that the digital image recognition accuracy of concrete structure cracks is not high under the condition of uneven ill umination and complex surface color of concrete structure,this paper has proposed a block segmentation method of maximum entropy threshold based on the digital image data obtained by the ACTIS automatic detection system.The steps in this research are as follows:1.The crack digital images of concrete specimens with typical fea-tures were collected by using the Actis system of KURABO Co,Ltd,of Japan in the concrete beam bending test.2.The images are segmented into blocks to dis-tinguish backgrounds of different grayscale.3.The max imum interclass average gray difference method is used to distinguish the sub-blocks and screen out the image blocks that need to be segmented.4.Segmentation is made to the image with 2D max imum entropy threshold segmentation method to obtain the binary image,and the target image can be obtained by screening the connected domain features of the binary image.Results have shown that compared with other algo-rithms,the proposed method can effectively decrease the image over-segmentation and under segmentation rates,highlight the characteristics of the target cracks,solve the problems of excessive difference between the identified length and actual length of cracks caused by background gray level change and uneven ilumnination,and effectively improve the recognition accuracy of bridge concrete cracks.
基金National Natural Science Foundation of China under Grant Nos.51978656 and 51478459the Key Research and Development Project of Xuzhou under Grant No.KC22282the Open Fund of Jiangsu Key Laboratory of Environmental Impact and Structural Safety in Civil Engineering,China University of Mining and Technology under Grant No.KFJJ202004。
文摘Considering the desirable behavior of concrete filled steel tube(CFT)columns and the complicated behavior of segmental double-column piers under cyclic loads,three post-tensioned precast segmental CFT double-column pier specimens were tested to extend their application in moderate and high seismicity areas.The effects of the number of CFT segments and the steel endplates as energy dissipaters on the seismic behavior of the piers were evaluated.The experimental results show that the segmental piers exhibited stable hysteretic behavior with small residual displacements under cyclic loads.All the tested specimens achieved a drift ratio no less than 13%without significant damage and strength deterioration due to the desirable behavior of CFT columns.Since the deformation of segmental columns was mainly concentrated at the column-footing interfaces,the increase of the segment numbers for each column had no obvious effects on the loading capacity but reduced the initial stiffness of the specimens.The use of steel endplates improved the bearing capacity,stiffness and energy dissipation of segmental piers,but weakened their self-centering capacity.Fiber models were also proposed to simulate the hysteretic behavior of the tested specimens,and the influences of segment numbers and prestress levels on seismic behavior were further studied.