The changes of resistivity of conductive asphalt concrete at different temperatures were studied,and positive temperature coefficient(PTC)modelwas established to estimate the influence of temperature on the resistiv...The changes of resistivity of conductive asphalt concrete at different temperatures were studied,and positive temperature coefficient(PTC)modelwas established to estimate the influence of temperature on the resistivity quantitatively,which eliminated the interference with conductivity evaluation brought by temperature variation.Finally,the analysis of temperature cycling test results proves that the changes of percolation network structure caused by temperature variation prompt the emergence of PTC of conductive asphalt concrete.展开更多
Hydration process, crack potential and setting time of concrete grade C30, C40 and C50 were monitored by using a non-contact electrical resistivity apparatus, a novel plastic ring mould and penetration resistance meth...Hydration process, crack potential and setting time of concrete grade C30, C40 and C50 were monitored by using a non-contact electrical resistivity apparatus, a novel plastic ring mould and penetration resistance methods, respectively. The results show the highest resistivity of C30 at the early stage until a point when C50 accelerated and overtook the others. It has been experimentally confirmed that the crossing point of C30 and C50 corresponds to the final setting time of C50. From resistivity derivative curve, four different stages were observed upon which the hydration process is classified; these are dissolution, induction, acceleration and deceleration periods. Consequently, restrained shrinkage crack and setting time results demonstrated that C50 set and cracked the earliest. The cracking time of all the samples occurred within a reasonable experimental period thus the novel plastic ring is a convenient method for predicting concrete's crack potential. The highest inflection time(t_i) obtained from resistivity curve and the final setting time(t_f) were used with crack time(t_c) in coming up with mathematical models for the prediction of concrete's cracking age for the range of concrete grade considered. Finally, an ANSYS numerical simulation supports the experimental findings in terms of the earliest crack age of C50 and the crack location.展开更多
To improve the combination of cement matrix and waste tire rubber particles in concrete, the rubber particles were treated with acrylic acid(ACA) and polyethylene glycol(PEG) for grafting hydrophilic groups on the...To improve the combination of cement matrix and waste tire rubber particles in concrete, the rubber particles were treated with acrylic acid(ACA) and polyethylene glycol(PEG) for grafting hydrophilic groups on their surfaces. The X-Ray photoelectron spectroscopy(XPS) and surface contact angle were used to characterize the hydrophilicity and surface functional group of rubber particles. The effect of rubber particle modifi cation on fresh/hardened properties of rubberized concrete was studied. The experimental results show that the contact angle between rubber particle surface and water decreases when rubber particle is modifi ed. Compared with the unmodifi ed rubberized concrete(RC), the unit weight of modifi ed rubberized concrete(MRC) changes slightly. However, the slump, air-entrainment, compressive strength, flexural strength, and impact performance of MRC are obviously improved. Under good condition of slump, the water-cement ratio of the MRC can be reduced from 0.4 to 0.38. And the compressive strength and fl exural strength of the MRC(10% rubber particle content) can be increased by 25.9% and 26.4%, respectively.展开更多
The cracking behavior of lightweight aggregate concrete(LWAC) was investigated by mechanical analysis, SEM and cracking-resistant test where a shrinkage-restrained ring with a clapboard was used. The relationship betw...The cracking behavior of lightweight aggregate concrete(LWAC) was investigated by mechanical analysis, SEM and cracking-resistant test where a shrinkage-restrained ring with a clapboard was used. The relationship between the ceramsite type and the cracking resistance of LWAC was built up and compared with that of normal-weight coarse aggregate concrete(NWAC). A new method was proposed to evaluate the cracking resistance of concrete, where the concepts of cracking coefficient ζt(t) and the evaluation index Acr(t) were proposed, and the development of micro-cracks and damage accumulation were recognized. For the concrete with an ascending cracking coefficient curve, the larger Acr(t) is, the lower cracking resistance of concrete is. For the concrete with a descending cracking coefficient curve, the larger Acr(t) is, the stronger the cracking resistance of concrete is. The evaluation results show that in the case of that all the three types of coarse aggregates in concrete are pre-soaked for 24 h, NWAC has the lowest cracking resistance, followed by the LWAC with lower water absorption capacity ceramsite and the LWAC with higher water absorption capacity ceramsite has the strongest cracking resistance. The proposed method has obvious advantages over the cracking age method, because it can evaluate the cracking behavior of concrete even if the concrete has not an observable crack.展开更多
In this paper, the peeling behavior and the spalling resistance effect of carbon fiber reinforced polymer (CFRP) sheets externally bonded to bent concrete surfaces are firstly investigated experimentally. Twenty one...In this paper, the peeling behavior and the spalling resistance effect of carbon fiber reinforced polymer (CFRP) sheets externally bonded to bent concrete surfaces are firstly investigated experimentally. Twenty one curved specimens and seven plane specimens are studied in the paper, in which curved specimens with bonded CFRP sheets can simulate the concrete spalling in tunnel, culvert, arch bridge etc., whereas plane specimens with bonded CFRP sheets can simulate the concrete spalling in beam bridge, slab bridge and pedestrian bridge. Three kinds of curved specimens with different radii of curvature are chosen by referring to practical tunnel structures, and plane specimens are used for comparison with curved ones. A peeling load is applied on the FRP sheet by loading a circular steel tube placed into the central notch of beam to debond CFRP sheets from the bent concrete surface, meanwhile full-range load-deflection curves are recorded by a MTS 831.10 Elastomer Test System. Based on the experimental results, a theoretical analysis is also conducted for the specimens. Both theoretical and experimental results show that only two material parameters, the interfacial fracture energy of CFRP-concrete interface and the tensile stiffness of CFRP sheets, are needed for describing the interfacial spalling behavior. It is found that the radius of curvature has remarkable influence on peeling load-deflection curves. The test methods and test results given in the paper are helpful and available for reference to the designer of tunnel strengthening.展开更多
The influence of chloride type on the diffusivity of chloride ions in concrete was studied by experiment. The result shows that the glectric resistance of concrete and the chloride diffusion coefficient are influenced...The influence of chloride type on the diffusivity of chloride ions in concrete was studied by experiment. The result shows that the glectric resistance of concrete and the chloride diffusion coefficient are influenced by chloride type. For the same water/cement ratio (W/C), the diffusion coefficient D in KCl solution is larger than that in NaCl solution; however, the concrete resistance in KCl solution is smaller than that in NaCl solution. The experimental result is analyzed with theory of diffusion.展开更多
He cold asphalt concrete is laid composite that combines the advantages of rigid cement concrete and asphalt concrete flexible pavement materials and new waterproof materials, and it is also known as semi-rigid concre...He cold asphalt concrete is laid composite that combines the advantages of rigid cement concrete and asphalt concrete flexible pavement materials and new waterproof materials, and it is also known as semi-rigid concrete or semi-rigid waterproof concrete. Cold paved asphalt concrete composite retains the advantages of rigid and flexible waterproof material waterproof material which abandoned both of their inadequacies, is waterproof material with a wide range of space research and application prospects. This study immersion Marshall test and freeze-thaw split test two test methods for cold-laid asphalt concrete composite conducted a comprehensive analysis of the stability of the water; the highest draw AC1-6 AC-20 immersion Marshall stability and 20.59, respectively, by testing MPa and 19.96 Mpa, freeze-thaw splitting strength to reach the highest ratio of 91% and 93% respectively, the value specification can be met, and through the analysis of the test data to identify the content of the asphalt cement content and cold water laid asphalt compound affect the stability of the peak will occur, so that it can be combined with concrete interfacial adhesion studies to further the comprehensive and accurate assessment of water resistance of the material.展开更多
基金Funded by the National Natural Science Foundation of China(No.51178348)
文摘The changes of resistivity of conductive asphalt concrete at different temperatures were studied,and positive temperature coefficient(PTC)modelwas established to estimate the influence of temperature on the resistivity quantitatively,which eliminated the interference with conductivity evaluation brought by temperature variation.Finally,the analysis of temperature cycling test results proves that the changes of percolation network structure caused by temperature variation prompt the emergence of PTC of conductive asphalt concrete.
基金Funded by National Natural Science Foundation of China(Nos.51478200 and 51178202)
文摘Hydration process, crack potential and setting time of concrete grade C30, C40 and C50 were monitored by using a non-contact electrical resistivity apparatus, a novel plastic ring mould and penetration resistance methods, respectively. The results show the highest resistivity of C30 at the early stage until a point when C50 accelerated and overtook the others. It has been experimentally confirmed that the crossing point of C30 and C50 corresponds to the final setting time of C50. From resistivity derivative curve, four different stages were observed upon which the hydration process is classified; these are dissolution, induction, acceleration and deceleration periods. Consequently, restrained shrinkage crack and setting time results demonstrated that C50 set and cracked the earliest. The cracking time of all the samples occurred within a reasonable experimental period thus the novel plastic ring is a convenient method for predicting concrete's crack potential. The highest inflection time(t_i) obtained from resistivity curve and the final setting time(t_f) were used with crack time(t_c) in coming up with mathematical models for the prediction of concrete's cracking age for the range of concrete grade considered. Finally, an ANSYS numerical simulation supports the experimental findings in terms of the earliest crack age of C50 and the crack location.
基金Funded by the National Natural Science Foundation of China(U1204513)the Programs for Science and Technology Development of Henan Province(132102310032)
文摘To improve the combination of cement matrix and waste tire rubber particles in concrete, the rubber particles were treated with acrylic acid(ACA) and polyethylene glycol(PEG) for grafting hydrophilic groups on their surfaces. The X-Ray photoelectron spectroscopy(XPS) and surface contact angle were used to characterize the hydrophilicity and surface functional group of rubber particles. The effect of rubber particle modifi cation on fresh/hardened properties of rubberized concrete was studied. The experimental results show that the contact angle between rubber particle surface and water decreases when rubber particle is modifi ed. Compared with the unmodifi ed rubberized concrete(RC), the unit weight of modifi ed rubberized concrete(MRC) changes slightly. However, the slump, air-entrainment, compressive strength, flexural strength, and impact performance of MRC are obviously improved. Under good condition of slump, the water-cement ratio of the MRC can be reduced from 0.4 to 0.38. And the compressive strength and fl exural strength of the MRC(10% rubber particle content) can be increased by 25.9% and 26.4%, respectively.
基金Project(51078090)supported by the National Natural Science Foundation of China
文摘The cracking behavior of lightweight aggregate concrete(LWAC) was investigated by mechanical analysis, SEM and cracking-resistant test where a shrinkage-restrained ring with a clapboard was used. The relationship between the ceramsite type and the cracking resistance of LWAC was built up and compared with that of normal-weight coarse aggregate concrete(NWAC). A new method was proposed to evaluate the cracking resistance of concrete, where the concepts of cracking coefficient ζt(t) and the evaluation index Acr(t) were proposed, and the development of micro-cracks and damage accumulation were recognized. For the concrete with an ascending cracking coefficient curve, the larger Acr(t) is, the lower cracking resistance of concrete is. For the concrete with a descending cracking coefficient curve, the larger Acr(t) is, the stronger the cracking resistance of concrete is. The evaluation results show that in the case of that all the three types of coarse aggregates in concrete are pre-soaked for 24 h, NWAC has the lowest cracking resistance, followed by the LWAC with lower water absorption capacity ceramsite and the LWAC with higher water absorption capacity ceramsite has the strongest cracking resistance. The proposed method has obvious advantages over the cracking age method, because it can evaluate the cracking behavior of concrete even if the concrete has not an observable crack.
基金supported by the Scheme of Science and Technology of Guangdong Province,China(2005B32801002)
文摘In this paper, the peeling behavior and the spalling resistance effect of carbon fiber reinforced polymer (CFRP) sheets externally bonded to bent concrete surfaces are firstly investigated experimentally. Twenty one curved specimens and seven plane specimens are studied in the paper, in which curved specimens with bonded CFRP sheets can simulate the concrete spalling in tunnel, culvert, arch bridge etc., whereas plane specimens with bonded CFRP sheets can simulate the concrete spalling in beam bridge, slab bridge and pedestrian bridge. Three kinds of curved specimens with different radii of curvature are chosen by referring to practical tunnel structures, and plane specimens are used for comparison with curved ones. A peeling load is applied on the FRP sheet by loading a circular steel tube placed into the central notch of beam to debond CFRP sheets from the bent concrete surface, meanwhile full-range load-deflection curves are recorded by a MTS 831.10 Elastomer Test System. Based on the experimental results, a theoretical analysis is also conducted for the specimens. Both theoretical and experimental results show that only two material parameters, the interfacial fracture energy of CFRP-concrete interface and the tensile stiffness of CFRP sheets, are needed for describing the interfacial spalling behavior. It is found that the radius of curvature has remarkable influence on peeling load-deflection curves. The test methods and test results given in the paper are helpful and available for reference to the designer of tunnel strengthening.
基金Funded by the National Natural Science Foundation of China(No. 50278039, 50578068 and 50538070)
文摘The influence of chloride type on the diffusivity of chloride ions in concrete was studied by experiment. The result shows that the glectric resistance of concrete and the chloride diffusion coefficient are influenced by chloride type. For the same water/cement ratio (W/C), the diffusion coefficient D in KCl solution is larger than that in NaCl solution; however, the concrete resistance in KCl solution is smaller than that in NaCl solution. The experimental result is analyzed with theory of diffusion.
文摘He cold asphalt concrete is laid composite that combines the advantages of rigid cement concrete and asphalt concrete flexible pavement materials and new waterproof materials, and it is also known as semi-rigid concrete or semi-rigid waterproof concrete. Cold paved asphalt concrete composite retains the advantages of rigid and flexible waterproof material waterproof material which abandoned both of their inadequacies, is waterproof material with a wide range of space research and application prospects. This study immersion Marshall test and freeze-thaw split test two test methods for cold-laid asphalt concrete composite conducted a comprehensive analysis of the stability of the water; the highest draw AC1-6 AC-20 immersion Marshall stability and 20.59, respectively, by testing MPa and 19.96 Mpa, freeze-thaw splitting strength to reach the highest ratio of 91% and 93% respectively, the value specification can be met, and through the analysis of the test data to identify the content of the asphalt cement content and cold water laid asphalt compound affect the stability of the peak will occur, so that it can be combined with concrete interfacial adhesion studies to further the comprehensive and accurate assessment of water resistance of the material.