An improved algorithm, which solves cooperative concurrent computing tasks using the idle cycles of a number of high performance heterogeneous workstations interconnected through a high-speed network, was proposed. In...An improved algorithm, which solves cooperative concurrent computing tasks using the idle cycles of a number of high performance heterogeneous workstations interconnected through a high-speed network, was proposed. In order to get better parallel computation performance, this paper gave a model and an algorithm of task scheduling among heterogeneous workstations, in which the costs of loading data, computing, communication and collecting results are considered. Using this efficient algorithm, an optimal subset of heterogeneous workstations with the shortest parallel executing time of tasks can be selected.展开更多
Building structure is like the skeleton of the building,it bears the effects of various forces and forms a supporting system,which is the material basis on which the building depends.Hence building structure design is...Building structure is like the skeleton of the building,it bears the effects of various forces and forms a supporting system,which is the material basis on which the building depends.Hence building structure design is a vital part in architecture design,architects often explore novel applications of their technologies for building structure innovation.However,such searches relied on experiences,expertise or gut feeling.In this paper,a new design method for the optimal building frame column design based on the genetic algorithm is proposed.First of all,in order to construct the optimal model of the building frame column,building units are divided into three categories in general:building bottom,main building and building roof.Secondly,the genetic algorithm is introduced to optimize the building frame column.In the meantime,a PGA-Skeleton based concurrent genetic algorithm design plan is proposed to improve the optimization efficiency of the genetic algorithm.Finally,effectiveness of the mentioned algorithm is verified through the simulation experiment.展开更多
Concurrent non-malleable zero-knowledge(CNMZK)considers the concurrent execution of zero-knowledge protocols in a setting even when adversaries can simultaneously corrupt multiple provers and verifiers.As far as we kn...Concurrent non-malleable zero-knowledge(CNMZK)considers the concurrent execution of zero-knowledge protocols in a setting even when adversaries can simultaneously corrupt multiple provers and verifiers.As far as we know,the round complexity of all the constructions of CNMZK arguments for NP is at least ω(log n).In this paper,we provide the first construction of a constant-round concurrent non-malleable zero-knowledge argument for every language in NP.Our protocol relies on the existence of families of collision-resistant hash functions,one-way permutations and indistinguishability obfuscators.As an additional contribution,we study the composition of two central notions in zero knowledge,the simultaneously resettable zero-knowledge and non-malleable zero-knowledge,which seemingly have stronger proved security guarantees.We give the first construction of a constant-round simultaneously-resettable non-malleable zero-knowledge.To the best of our knowledge,this is the first study to combine the two security concepts described above together in the zero-knowledge protocols.展开更多
The paper proposes reaction graphs as graphical representations of computational objects.A reaction graph is a directed graph with all its arrows and some of its nodes labeled. Compu-tations are modeled by graph rewri...The paper proposes reaction graphs as graphical representations of computational objects.A reaction graph is a directed graph with all its arrows and some of its nodes labeled. Compu-tations are modeled by graph rewriting of a simple nature. The basic rewriting rules embodythe essence of both the communications among processes and cut-eliminations in proofs. Cal-culi of graphs are identified to give a formal and algebraic account of reaction graphs in thespirit of process algebra. With the help of the calculi, it is demonstrated that reaction graphscapture many interesting aspects of computations.展开更多
文摘An improved algorithm, which solves cooperative concurrent computing tasks using the idle cycles of a number of high performance heterogeneous workstations interconnected through a high-speed network, was proposed. In order to get better parallel computation performance, this paper gave a model and an algorithm of task scheduling among heterogeneous workstations, in which the costs of loading data, computing, communication and collecting results are considered. Using this efficient algorithm, an optimal subset of heterogeneous workstations with the shortest parallel executing time of tasks can be selected.
文摘Building structure is like the skeleton of the building,it bears the effects of various forces and forms a supporting system,which is the material basis on which the building depends.Hence building structure design is a vital part in architecture design,architects often explore novel applications of their technologies for building structure innovation.However,such searches relied on experiences,expertise or gut feeling.In this paper,a new design method for the optimal building frame column design based on the genetic algorithm is proposed.First of all,in order to construct the optimal model of the building frame column,building units are divided into three categories in general:building bottom,main building and building roof.Secondly,the genetic algorithm is introduced to optimize the building frame column.In the meantime,a PGA-Skeleton based concurrent genetic algorithm design plan is proposed to improve the optimization efficiency of the genetic algorithm.Finally,effectiveness of the mentioned algorithm is verified through the simulation experiment.
基金supported in part by the National Natural Science Foun-dation of China(Grant No.61772521)Key Research Program of Frontier Sciences,CAS(QYZDB-SSW-SYS035)the Open Project Program of the State Key Laboratory of Cryptology。
文摘Concurrent non-malleable zero-knowledge(CNMZK)considers the concurrent execution of zero-knowledge protocols in a setting even when adversaries can simultaneously corrupt multiple provers and verifiers.As far as we know,the round complexity of all the constructions of CNMZK arguments for NP is at least ω(log n).In this paper,we provide the first construction of a constant-round concurrent non-malleable zero-knowledge argument for every language in NP.Our protocol relies on the existence of families of collision-resistant hash functions,one-way permutations and indistinguishability obfuscators.As an additional contribution,we study the composition of two central notions in zero knowledge,the simultaneously resettable zero-knowledge and non-malleable zero-knowledge,which seemingly have stronger proved security guarantees.We give the first construction of a constant-round simultaneously-resettable non-malleable zero-knowledge.To the best of our knowledge,this is the first study to combine the two security concepts described above together in the zero-knowledge protocols.
文摘The paper proposes reaction graphs as graphical representations of computational objects.A reaction graph is a directed graph with all its arrows and some of its nodes labeled. Compu-tations are modeled by graph rewriting of a simple nature. The basic rewriting rules embodythe essence of both the communications among processes and cut-eliminations in proofs. Cal-culi of graphs are identified to give a formal and algebraic account of reaction graphs in thespirit of process algebra. With the help of the calculi, it is demonstrated that reaction graphscapture many interesting aspects of computations.