In order to fulfill the product concurrent design requirements of discrete manufacturing enterprises, this paper puts forth for the first time a Collaborative Product Commerce (CPC) oriented X2D (X to Design) theory, ...In order to fulfill the product concurrent design requirements of discrete manufacturing enterprises, this paper puts forth for the first time a Collaborative Product Commerce (CPC) oriented X2D (X to Design) theory, which can take Collaboration, Commerce and Concurrence (3C) into realization during the product design stage. At the same time, this research adopts VPN (Virtual Private Network) technique to ensure the security of product data and information during transportation. By building CPC oriented and VPN based framework of X2D product concurrent design system, the paper explores a way for discrete enterprises adapting to the drastically competitive market and performing their product innovation.展开更多
Using Response Surface Methodology (RSM), an optimizing model of concurrent parameter and tolerance design is proposed where response mean equals its target in the target being best. The optimizing function of the mod...Using Response Surface Methodology (RSM), an optimizing model of concurrent parameter and tolerance design is proposed where response mean equals its target in the target being best. The optimizing function of the model is the sum of quality loss and tolerance cost subjecting to the variance confidence region of which six sigma capability can be assured. An example is illustrated in order to compare the differences between the developed model and the parameter design with minimum variance. The results show that the proposed method not only achieves robustness, but also greatly reduces cost. The objectives of high quality and low cost of product and process can be achieved simultaneously by the application of six sigma concurrent parameter and tolerance design.展开更多
A CAD tools environment is described to support concurrent collaborative design. The environment has four components: shared design representation, design process control, CAD tools, designer interface. So...A CAD tools environment is described to support concurrent collaborative design. The environment has four components: shared design representation, design process control, CAD tools, designer interface. Some related issues for the construction, such as form feature handling, constraint satisfaction, design process control, STEP based information integration, are discussed in more detail.展开更多
Tolerance analysis is investigated under an environment of concurrent design in order to lead to optimized tolerance, as traditional tolerance analysis is often inefficient and liable to mistakes. Making full use of k...Tolerance analysis is investigated under an environment of concurrent design in order to lead to optimized tolerance, as traditional tolerance analysis is often inefficient and liable to mistakes. Making full use of knowledge in manufacturing tolerance analysis combined with the beta distribution model is introduced and applied. The use of beta distribution reflects fully actual capabilities in manufacture. Concurrent tolerance design is a manufacturing environment oriented design process paying more attention to influences or restraints on product design caused by such factors as the manufacturing process, machine capabilities, economy in manufacturing, etc. Process environment oriented tolerance analysis is more flexible making the designed results more practical and effective.展开更多
The present work introduces a novel concurrent optimization formulation to meet the requirements of lightweight design and various constraints simultaneously.Nodal displacement of macrostructure and effective thermal ...The present work introduces a novel concurrent optimization formulation to meet the requirements of lightweight design and various constraints simultaneously.Nodal displacement of macrostructure and effective thermal conductivity of microstructure are regarded as the constraint functions, which means taking into account both the loadcarrying capabilities and the thermal insulation properties.The effective properties of porous material derived from numerical homogenization are used for macrostructural analysis. Meanwhile, displacement vectors of macrostructures from original and adjoint load cases are used for sensitivity analysis of the microstructure. Design variables in the form of reciprocal functions of relative densities are introduced and used for linearization of the constraint function. The objective function of total mass is approximately expressed by the second order Taylor series expansion. Then, the proposed concurrent optimization problem is solved using a sequential quadratic programming algorithm, by splitting into a series of sub-problems in the form of the quadratic program. Finally, several numerical examples are presented to validate the effectiveness of the proposed optimization method. The various effects including initial designs, prescribed limits of nodal displacement, and effective thermal conductivity on optimized designs are also investigated. An amount of optimized macrostructures and their corresponding microstructures are achieved.展开更多
Acclimatizing itself to the development of network,Math Works Inc constructed a MATLAB Web Server environment by dint of which one can browse the calculation and plots of MATLAB through Internet directly.The installat...Acclimatizing itself to the development of network,Math Works Inc constructed a MATLAB Web Server environment by dint of which one can browse the calculation and plots of MATLAB through Internet directly.The installation and use of the environment is introduced.A code established on the platform of MATLAB,which deals with the modal analysis of magnetic bearing system(MBS) supporting rotors of five degrees of freedom and considering the coupling of thrust bearing with radical bearings is modified to work in the environment.The purpose is to realize a remote call of the code by users through Internet for the performance analysis of the system.Such an application is very important to the concurrent design of MBS and for the utilization of distributive knowledge acquisition resources in collaborative design.The work on modification and realization is described and the results are discussed.展开更多
Reconfigurable products and manufacturing systems have enabled manufacturers to provide "cost effective" variety to the market. In spite of these new technologies, the expense of manufacturing makes it infeasible to...Reconfigurable products and manufacturing systems have enabled manufacturers to provide "cost effective" variety to the market. In spite of these new technologies, the expense of manufacturing makes it infeasible to supply all the possible variants to the market for some industries. Therefore, the determination of the right number of product variantsto offer in the product portfolios becomes an important consideration. The product portfolio planning problem had been independently well studied from marketing and engineering perspectives. However, advantages can be gained from using a concurrent marketing and engineering approach. Concurrent product development strategies specifically for reconfigurable products and manufacturing systems can allow manufacturers to select best product portfolios from marketing, product design and manufacturing perspectives. A methodology for the concurrent design of a product portfolio and assembly system is presented. The objective of the concurrent product portfolio planning and assembly system design problem is to obtain the product variants that will make up the product portfolio such that oversupply of optional modules is minimized and the assembly line efficiency is maximized. Explicit design of the assembly system is obtained during the solution of the problem. It is assumed that the demand for optional modules and the assembly times for these modules are known a priori. A genetic algorithm is used in the solution of the problem. The basic premise of this methodology is that the selected product portfolio has a significant impact on the solution of the assembly line balancing problem. An example is used to validate this hypothesis. The example is then further developed to demonstrate how the methodology can be used to obtain the optimal product portfolio. This approach is intended for use by manufacturers during the early design stages of product family design.展开更多
Considering the diversity of methods and tools offered to concurrent engineering, the aspects playing important roles in the concurrent engineering context have been pinpointed as being four core elements which are Ac...Considering the diversity of methods and tools offered to concurrent engineering, the aspects playing important roles in the concurrent engineering context have been pinpointed as being four core elements which are Activity, Method, Object and Information. Based on these four elements, a reference framework called AMOI is proposed to be the guideline for the systematic concurrent product design. Using the AMOI reference framework, concurrent product development system can be structured into four function models (including the activity model, method model, object model and information model) which are interconnected with each other.展开更多
Research situation of concurrent tolerance design has been analyzed. As fuzzy factors are objective and unavoidable in concurrent tolerance design, fuzzy optimization theory is applied in the design. A new mathematica...Research situation of concurrent tolerance design has been analyzed. As fuzzy factors are objective and unavoidable in concurrent tolerance design, fuzzy optimization theory is applied in the design. A new mathematical model of concurrent tolerance design is constructed.展开更多
Maintainability influencing attributes are analyzed, their weight and value calculating methods are given, and the maintainability fuzzy evaluation method is proposed based on the relative closeness. According to the ...Maintainability influencing attributes are analyzed, their weight and value calculating methods are given, and the maintainability fuzzy evaluation method is proposed based on the relative closeness. According to the maintenance task simulation operated in virtual environment, the maintainability virtual evaluation model is built by analyzing the maintenance task for each replaceable unit of product. At last, a case study is given based upon the main landing gear system of a certain type civil aircraft, and the result indicates that the model is suitable for maintainability qualitative evaluation and can support maintainability concurrent design.展开更多
Detailed manufacturing information about the parts can help designers produce better designs. Detailed manufacturing information is conveyed to the designer through micro-circles within the concurrent design process ...Detailed manufacturing information about the parts can help designers produce better designs. Detailed manufacturing information is conveyed to the designer through micro-circles within the concurrent design process for machined parts, focusing on instantaneous product design and process planning. The process has three key elements: a hierarchical architecture design of the concurrent process planning system, modeling and reengineering of the concurrent process planning, and modeling of information. The approach is successfully implemented and applied for concurrent design and process planning of some complicated parts.展开更多
Current multiscale topology optimization restricts the solution space by enforcing the use of a few repetitive microstructures that are predetermined,and thus lack the ability for structural concerns like buckling str...Current multiscale topology optimization restricts the solution space by enforcing the use of a few repetitive microstructures that are predetermined,and thus lack the ability for structural concerns like buckling strength,robustness,and multi-functionality.Therefore,in this paper,a new multiscale concurrent topology optimization design,referred to as the self-consistent analysis-based moving morphable component(SMMC)method,is proposed.Compared with the conventional moving morphable component method,the proposed method seeks to optimize both material and structure simultaneously by explicitly designing both macrostructure and representative volume element(RVE)-level microstructures.Numerical examples with transducer design requirements are provided to demonstrate the superiority of the SMMC method in comparison to traditional methods.The proposed method has broad impact in areas of integrated industrial manufacturing design:to solve for the optimized macro and microstructures under the objective function and constraints,to calculate the structural response efficiently using a reduced-order model:self-consistent analysis,and to link the SMMC method to manufacturing(industrial manufacturing or additive manufacturing)based on the design requirements and application areas.展开更多
文摘In order to fulfill the product concurrent design requirements of discrete manufacturing enterprises, this paper puts forth for the first time a Collaborative Product Commerce (CPC) oriented X2D (X to Design) theory, which can take Collaboration, Commerce and Concurrence (3C) into realization during the product design stage. At the same time, this research adopts VPN (Virtual Private Network) technique to ensure the security of product data and information during transportation. By building CPC oriented and VPN based framework of X2D product concurrent design system, the paper explores a way for discrete enterprises adapting to the drastically competitive market and performing their product innovation.
基金the National Natural Science Foundation of China (No:70572044)New Central Elitist(No:04-0240)
文摘Using Response Surface Methodology (RSM), an optimizing model of concurrent parameter and tolerance design is proposed where response mean equals its target in the target being best. The optimizing function of the model is the sum of quality loss and tolerance cost subjecting to the variance confidence region of which six sigma capability can be assured. An example is illustrated in order to compare the differences between the developed model and the parameter design with minimum variance. The results show that the proposed method not only achieves robustness, but also greatly reduces cost. The objectives of high quality and low cost of product and process can be achieved simultaneously by the application of six sigma concurrent parameter and tolerance design.
文摘A CAD tools environment is described to support concurrent collaborative design. The environment has four components: shared design representation, design process control, CAD tools, designer interface. Some related issues for the construction, such as form feature handling, constraint satisfaction, design process control, STEP based information integration, are discussed in more detail.
文摘Tolerance analysis is investigated under an environment of concurrent design in order to lead to optimized tolerance, as traditional tolerance analysis is often inefficient and liable to mistakes. Making full use of knowledge in manufacturing tolerance analysis combined with the beta distribution model is introduced and applied. The use of beta distribution reflects fully actual capabilities in manufacture. Concurrent tolerance design is a manufacturing environment oriented design process paying more attention to influences or restraints on product design caused by such factors as the manufacturing process, machine capabilities, economy in manufacturing, etc. Process environment oriented tolerance analysis is more flexible making the designed results more practical and effective.
基金supported by the National Natural Science Foundation of China (Grants 11202078, 51405123)the Fundamental Research Funds for the Central Universities (Grant 2017MS077)
文摘The present work introduces a novel concurrent optimization formulation to meet the requirements of lightweight design and various constraints simultaneously.Nodal displacement of macrostructure and effective thermal conductivity of microstructure are regarded as the constraint functions, which means taking into account both the loadcarrying capabilities and the thermal insulation properties.The effective properties of porous material derived from numerical homogenization are used for macrostructural analysis. Meanwhile, displacement vectors of macrostructures from original and adjoint load cases are used for sensitivity analysis of the microstructure. Design variables in the form of reciprocal functions of relative densities are introduced and used for linearization of the constraint function. The objective function of total mass is approximately expressed by the second order Taylor series expansion. Then, the proposed concurrent optimization problem is solved using a sequential quadratic programming algorithm, by splitting into a series of sub-problems in the form of the quadratic program. Finally, several numerical examples are presented to validate the effectiveness of the proposed optimization method. The various effects including initial designs, prescribed limits of nodal displacement, and effective thermal conductivity on optimized designs are also investigated. An amount of optimized macrostructures and their corresponding microstructures are achieved.
文摘Acclimatizing itself to the development of network,Math Works Inc constructed a MATLAB Web Server environment by dint of which one can browse the calculation and plots of MATLAB through Internet directly.The installation and use of the environment is introduced.A code established on the platform of MATLAB,which deals with the modal analysis of magnetic bearing system(MBS) supporting rotors of five degrees of freedom and considering the coupling of thrust bearing with radical bearings is modified to work in the environment.The purpose is to realize a remote call of the code by users through Internet for the performance analysis of the system.Such an application is very important to the concurrent design of MBS and for the utilization of distributive knowledge acquisition resources in collaborative design.The work on modification and realization is described and the results are discussed.
文摘Reconfigurable products and manufacturing systems have enabled manufacturers to provide "cost effective" variety to the market. In spite of these new technologies, the expense of manufacturing makes it infeasible to supply all the possible variants to the market for some industries. Therefore, the determination of the right number of product variantsto offer in the product portfolios becomes an important consideration. The product portfolio planning problem had been independently well studied from marketing and engineering perspectives. However, advantages can be gained from using a concurrent marketing and engineering approach. Concurrent product development strategies specifically for reconfigurable products and manufacturing systems can allow manufacturers to select best product portfolios from marketing, product design and manufacturing perspectives. A methodology for the concurrent design of a product portfolio and assembly system is presented. The objective of the concurrent product portfolio planning and assembly system design problem is to obtain the product variants that will make up the product portfolio such that oversupply of optional modules is minimized and the assembly line efficiency is maximized. Explicit design of the assembly system is obtained during the solution of the problem. It is assumed that the demand for optional modules and the assembly times for these modules are known a priori. A genetic algorithm is used in the solution of the problem. The basic premise of this methodology is that the selected product portfolio has a significant impact on the solution of the assembly line balancing problem. An example is used to validate this hypothesis. The example is then further developed to demonstrate how the methodology can be used to obtain the optimal product portfolio. This approach is intended for use by manufacturers during the early design stages of product family design.
文摘Considering the diversity of methods and tools offered to concurrent engineering, the aspects playing important roles in the concurrent engineering context have been pinpointed as being four core elements which are Activity, Method, Object and Information. Based on these four elements, a reference framework called AMOI is proposed to be the guideline for the systematic concurrent product design. Using the AMOI reference framework, concurrent product development system can be structured into four function models (including the activity model, method model, object model and information model) which are interconnected with each other.
基金This Project is supported by National Natural Science Foundation of China.
文摘Research situation of concurrent tolerance design has been analyzed. As fuzzy factors are objective and unavoidable in concurrent tolerance design, fuzzy optimization theory is applied in the design. A new mathematical model of concurrent tolerance design is constructed.
基金National Natural Science Foundation of China-Joint Found of Civil Aviation Research (60572171)
文摘Maintainability influencing attributes are analyzed, their weight and value calculating methods are given, and the maintainability fuzzy evaluation method is proposed based on the relative closeness. According to the maintenance task simulation operated in virtual environment, the maintainability virtual evaluation model is built by analyzing the maintenance task for each replaceable unit of product. At last, a case study is given based upon the main landing gear system of a certain type civil aircraft, and the result indicates that the model is suitable for maintainability qualitative evaluation and can support maintainability concurrent design.
基金Supported by the State High- Tech Development Plan ofChina(No.863 - 5 11- 9842 - 0 11)
文摘Detailed manufacturing information about the parts can help designers produce better designs. Detailed manufacturing information is conveyed to the designer through micro-circles within the concurrent design process for machined parts, focusing on instantaneous product design and process planning. The process has three key elements: a hierarchical architecture design of the concurrent process planning system, modeling and reengineering of the concurrent process planning, and modeling of information. The approach is successfully implemented and applied for concurrent design and process planning of some complicated parts.
文摘Current multiscale topology optimization restricts the solution space by enforcing the use of a few repetitive microstructures that are predetermined,and thus lack the ability for structural concerns like buckling strength,robustness,and multi-functionality.Therefore,in this paper,a new multiscale concurrent topology optimization design,referred to as the self-consistent analysis-based moving morphable component(SMMC)method,is proposed.Compared with the conventional moving morphable component method,the proposed method seeks to optimize both material and structure simultaneously by explicitly designing both macrostructure and representative volume element(RVE)-level microstructures.Numerical examples with transducer design requirements are provided to demonstrate the superiority of the SMMC method in comparison to traditional methods.The proposed method has broad impact in areas of integrated industrial manufacturing design:to solve for the optimized macro and microstructures under the objective function and constraints,to calculate the structural response efficiently using a reduced-order model:self-consistent analysis,and to link the SMMC method to manufacturing(industrial manufacturing or additive manufacturing)based on the design requirements and application areas.