期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Experimental study of Al agglomeration on solid propellant burning surface and condensed combustion products 被引量:3
1
作者 Cheng-yin Tu Xiong Chen +2 位作者 Ying-kun Li Bei-chen Zhang Chang-sheng Zhou 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第8期111-122,共12页
Aluminum(Al) particles are commonly added to energetic materials including propellants,explosives and pyrotechnics to increase the overall energy density of the composite,but aluminum agglomeration on the combustion s... Aluminum(Al) particles are commonly added to energetic materials including propellants,explosives and pyrotechnics to increase the overall energy density of the composite,but aluminum agglomeration on the combustion surface may lower the combustion efficiency of propellants,resulting in a loss in twophase flow.Therefore,it is necessary to understand the agglomeration mechanism of aluminum particles on the combustion surface.In this paper,a high-pressure sealed combustion chamber is constructed,and high-speed camera is used to capture the whole process of aluminum accumulation,aggregation and agglomeration on the combustion surface,and the secondary agglomeration process near the combustion surface.The microscopic morphology and chemical composition of the condensed combustion products(CCPs) are then studied by using scanning electron microscopy coupled with energy dispersive(SEM-EDS) method.Results show that there are three main types of condensed combustion products:small smoke oxide particles oxidized by aluminum vapor,usually less than 1 μm;typical agglomerates formed by the combustion of aluminum agglomerates;carbonized agglomerates that are widely distributed,usually formed by irregular movements of aluminum agglomerates.The particle size of condensed combustion products is measured by laser particle size meter.As the pressure increases from 0.5 MPa to 1.0 MPa in nitrogen,the mass average particle size of aluminum agglomerates decreases by 49.7%.As the ambient gas is changed from 0.5 MPa nitrogen to 0.5 MPa air,the mass average particle size of aluminum agglomerates decreases by 67.3%.Results show that as the ambient pressure increases,the higher oxygen content can improve combustion efficiency and reduce the average agglomeration size of aluminum particles. 展开更多
关键词 Solid propellant Al particles condensed combustion products AGGLOMERATION Microscopic morphology
下载PDF
Elaborative collection of condensed combustion products of solid propellants:Towards a real Solid Rocket Motor(SRM)operational environment 被引量:1
2
作者 Wenchao ZHANG Zhimin FAN +4 位作者 Dongliang GOU Yao SHU Peijin LIU Aimin PANG Wen AO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第1期77-88,共12页
A novel constant-pressure and constant-quenching distance Condensed Combustion Products(CCPs)collection system was developed,coupled with a timing control system,to collect the CCPs formed in the course of burning of ... A novel constant-pressure and constant-quenching distance Condensed Combustion Products(CCPs)collection system was developed,coupled with a timing control system,to collect the CCPs formed in the course of burning of aluminum-based composite propellants.The effects of adiabatic graphite plating,collection zone,quenching distance,time series of collection,and propellant burning rate on the microscopic morphology,particle size distribution and unburned aluminum content of CCPs were investigated.It was verified that the graphite plating can provide a high-fidelity high-temperature environment for propellant combustion.The combustion efficiency is improved by 2.44% compared to the bare propellant case.The time series of collection has a significant effect on the combustion efficiency of aluminum,and the combustion efficiency of aluminum in the thermal state(1.2-2.4 s)is 2.75% higher than that in the cold state(0-1.2 s).Similarly,the characteristics of the CCPs in different collection zones are different.At the quenching distance of 5 mm,the combustion efficiency of aluminum in the core zone(85.39%)is much lower than that in the outer zone(92.07%),while the particle size of the CCPs in the core zone(172μm)is larger than that in the outer zone(41μm).This indicates that the core zone is more likely to produce large-sized and incompletely burned agglomerates during the propellant combustion process.Different burning rates also lead to a significant difference in particle size distribution and combustion efficiency.High burning rates result in higher combustion efficiency.A detailed sequence of the elaborative collection process of CCPs is proposed,mainly including the setting of ignition delay time,burning rate,working pressure,plating length and time series of collection.The findings of this study are expected to provide a reliable tool for the evaluation of the combustion efficiency of solid propellants. 展开更多
关键词 Composite propellants condensed combustion products ALUMINUM combustion efficiency Particle size distribution
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部