Solvents have an essential association with polymer solution behavior.However,few researches have been deeply done on this respect.In recent years,our research group focus on the study on effect of solvent properties ...Solvents have an essential association with polymer solution behavior.However,few researches have been deeply done on this respect.In recent years,our research group focus on the study on effect of solvent properties on solution behavior and film condensed state structure for semi-rigid conjugated polymer up till to apply for optoelectronic device.Herein,influence of solvent properties including solubility of solvent,aromaticity,polarity and hydrogen bonds on semi-rigid polymer chain solution behavior,i.e.,single chain conformation,chain shape,size and chains aggregated density were studied by means of static/dynamic laser light scattering(DLS/SLS)and exponential law etc.Effect of solvent properties on condensed state structure of the semi-rigid conjugated polymer film was studied by UV absorption spectroscopy,PL spectroscopy and electron microscopy etc.The essential reasons for the influence were discovered and the mechanism was revealed.It was found that solution behavior with different solvent properties had an essential physical relationship with chains condensed state structure of the semi-rigid conjugated polymers.More importantly,there was a quantitative structure-activity relationship between solution and film.The key to this relationship depended on the interaction between solvent molecules and the semi-rigid conjugated polymer chains.This interaction could also affect optoelectronic devices performance.This study is of great significance to effectively control the condensed state structure of the semirigid conjugated polymers in the process of dynamic evolution from solutions to films.It not only enriches the knowledge and understanding of both semi-rigid conjugated polymer solution behaviors and film condensed state physics based on polymer physics,but also is meaningful to practical application for conjugated polymer and other traditional polymer systems.展开更多
The solventnatures are crucial to deeply reveal solution behavior of macromolecular chains,physical essence of condensed state structures formation of the film as well as the photoelectronic devices performance.Based ...The solventnatures are crucial to deeply reveal solution behavior of macromolecular chains,physical essence of condensed state structures formation of the film as well as the photoelectronic devices performance.Based on the second virial coefficient(A2),effect of the synergistic action of solvents and external electric field on both solution behavior and the film’s condensed state structure for the semi-rigid conjugated polymer,poly[2-methoxy-5-(2’-ethylhexoxy)-1,4-phenylvinylene](MEH-PPV)was investigated by dynamic/static light scattering,photoluminescence spectroscopy and transmission electron microscopy,etc.It was found that although the MEH-PPV solutions with different solvents(toluene,chlorobenzene,chloroform and tetrahydrofuran)all could generate a response to the external electric field,the degree of response varied significantly with the change of solvent nature.Furthermore,ordered degree of the film from the solutions was also obviously different.The essential reason for this responsive difference was firstly revealed in the research,which actually depended on the degree of interaction between the solute and solvent,and this degree of interaction could be quantitatively described by the second virial coefficient(A2).The bigger the A2,the stronger the interaction between solvent and solute in the solution,and the stronger the response to the external electric field.Further,under the induction of external electric field,chains aggregations with different sizes were formed accompanied by large-scale chains ordered structure in the solution.This ordered structure not only can effectively transfer to film prepared by the precursor solution but also is beneficial to enhance the carrier mobility and device efficiency of the photoelectronic film.展开更多
基金the National Natural Science Foundation of China(Nos.91333103 and 21574053).
文摘Solvents have an essential association with polymer solution behavior.However,few researches have been deeply done on this respect.In recent years,our research group focus on the study on effect of solvent properties on solution behavior and film condensed state structure for semi-rigid conjugated polymer up till to apply for optoelectronic device.Herein,influence of solvent properties including solubility of solvent,aromaticity,polarity and hydrogen bonds on semi-rigid polymer chain solution behavior,i.e.,single chain conformation,chain shape,size and chains aggregated density were studied by means of static/dynamic laser light scattering(DLS/SLS)and exponential law etc.Effect of solvent properties on condensed state structure of the semi-rigid conjugated polymer film was studied by UV absorption spectroscopy,PL spectroscopy and electron microscopy etc.The essential reasons for the influence were discovered and the mechanism was revealed.It was found that solution behavior with different solvent properties had an essential physical relationship with chains condensed state structure of the semi-rigid conjugated polymers.More importantly,there was a quantitative structure-activity relationship between solution and film.The key to this relationship depended on the interaction between solvent molecules and the semi-rigid conjugated polymer chains.This interaction could also affect optoelectronic devices performance.This study is of great significance to effectively control the condensed state structure of the semirigid conjugated polymers in the process of dynamic evolution from solutions to films.It not only enriches the knowledge and understanding of both semi-rigid conjugated polymer solution behaviors and film condensed state physics based on polymer physics,but also is meaningful to practical application for conjugated polymer and other traditional polymer systems.
基金financially supported by the National Natural Science Foundation of China(Nos.91333103 and 21574053)。
文摘The solventnatures are crucial to deeply reveal solution behavior of macromolecular chains,physical essence of condensed state structures formation of the film as well as the photoelectronic devices performance.Based on the second virial coefficient(A2),effect of the synergistic action of solvents and external electric field on both solution behavior and the film’s condensed state structure for the semi-rigid conjugated polymer,poly[2-methoxy-5-(2’-ethylhexoxy)-1,4-phenylvinylene](MEH-PPV)was investigated by dynamic/static light scattering,photoluminescence spectroscopy and transmission electron microscopy,etc.It was found that although the MEH-PPV solutions with different solvents(toluene,chlorobenzene,chloroform and tetrahydrofuran)all could generate a response to the external electric field,the degree of response varied significantly with the change of solvent nature.Furthermore,ordered degree of the film from the solutions was also obviously different.The essential reason for this responsive difference was firstly revealed in the research,which actually depended on the degree of interaction between the solute and solvent,and this degree of interaction could be quantitatively described by the second virial coefficient(A2).The bigger the A2,the stronger the interaction between solvent and solute in the solution,and the stronger the response to the external electric field.Further,under the induction of external electric field,chains aggregations with different sizes were formed accompanied by large-scale chains ordered structure in the solution.This ordered structure not only can effectively transfer to film prepared by the precursor solution but also is beneficial to enhance the carrier mobility and device efficiency of the photoelectronic film.