We study vacuum of QCD in this work.The structure of non-local quark vacuum condensate,values ofvarious local quark and gluon vacuum condensates,quark-gluon mixed vacuum condensate,quark and gluon virtualityin QCD vac...We study vacuum of QCD in this work.The structure of non-local quark vacuum condensate,values ofvarious local quark and gluon vacuum condensates,quark-gluon mixed vacuum condensate,quark and gluon virtualityin QCD vacuum state,quark dynamical mass and susceptibility of QCD vacuum state to external field are predicted byuse of the solutions of Dyson Schwinger equations in'rainbow'approximation with a modeling gluon propagator andthree different sets of quark-quark interaction parameters.Our theoretical predictions are in good agreement with thecorrespondent empirical values used widely in literature,and many other theoretical calculations.The quark propagatorand self-energy functions are also obtained from the numerical solutions of Dyson-Schwinger equations.This work iscentrally important for studying non-perturbative QCD,and has many important applications both in particle andnuclear physics.展开更多
We propose that the QCD vacuum pion tetrahedron condensate density vary in space and drops to extremely low values in the Kennan, Barger and Cowie (KBC) void in analogy to earth’s atmospheric density drop with elevat...We propose that the QCD vacuum pion tetrahedron condensate density vary in space and drops to extremely low values in the Kennan, Barger and Cowie (KBC) void in analogy to earth’s atmospheric density drop with elevation from earth. We propose a formula for the gravitation acceleration based on the non-uniform pion tetrahedron condensate. Gravity may be due to the underlying microscopic attraction between quarks and antiquarks, which are part of the vacuum pion tetrahedron condensate. We propose an electron tetrahedron model, where electrons are comprised of tetraquark tetrahedrons, and . The quarks determine the negative electron charge and the or quarks determine the electron two spin states. The electron tetrahedron may perform a high frequency quark exchange reactions with the pion tetrahedron condensate by tunneling through the condensation gap creating a delocalized electron cloud with a fixed spin. The pion tetrahedron may act as a QCD glue bonding electron pairs in atoms and molecules and protons to neutrons in the nuclei. Conservation of valence quarks and antiquarks is proposed.展开更多
Based on the Global Color Symmetry Model, the non-perturbative Q, CD vacuum is investigated in the parameterized fully dressed quark propagator. Our theoretical predictions for various quantities characterized the QCD...Based on the Global Color Symmetry Model, the non-perturbative Q, CD vacuum is investigated in the parameterized fully dressed quark propagator. Our theoretical predictions for various quantities characterized the QCD vacuum are in agreement with those predicted by many other phenomenologieal QCD inspired models. The successful predictions clearly indicate the extensive validity of our parameterized quark propagator used here. A detailed discussion on the arbitrariness in determining the integration cut-off parameter ofμ in calculating QCD vacuum condensates and a good method, which avoided the dependence of calculating results on the cut-off parameter is also strongly recommended to readers.展开更多
In this paper, we briefly go over the homogeneous 5D model field theory: from the 5D space-time inception, to its quantum field solutions given in terms of Higgs vacuum, filled with magnetic monopole bose fields of al...In this paper, we briefly go over the homogeneous 5D model field theory: from the 5D space-time inception, to its quantum field solutions given in terms of Higgs vacuum, filled with magnetic monopole bose fields of all energies. Then through the space dimension reduction projections, the Gell-Mann standard model was obtained as well as a quantum to Classical connection was made via introducing Bose distribution to the monopoles to obtain the Perelman entropy and Ricci Flow mappings. This provided us a picture to the creation of Astronomical objects, from galaxies to stars and planets. This method of splitting the monopole energy into ranges is extended to show that below the basic rest mass range of the electron and Quark, it still can be applied to explaining for the creation of the chemical elements periodic table. But perhaps the most interesting is in the lowest hundreds of Hz energy range, obtained from yet another 3 fold space symmetry breaking, into 2D × 1D, producing bio nitrogenous bases composed of 3 Carbon 12 in hexagon structures, due to preservation of the 1D monopole standing waves of this low frequencies. From that by imposing gauge changes the monopole states into DNA spectra. Since such spectra states retain the DLRO, it induces formation of charge carriers periodicity in a spherical bio cell.. It was then argued that due to cell’s surface proteins, the structure must contain partial filled VB, with “p” state hole density, and empty CB, separated from VB by a positive band gap. Such band structures resemble known HTC Cuprate ceramics. Since the HTC goes through a Superconductivity transition via the simultaneous bose exciton condensation, providing a Coulomb pressure, which reduces the band gap substantially, and induces the ODLRO transition of the hole density. The same obviously applies to the bio cells. Because of the near continuous exciton levels generated, a matching to the DNA spectra then can always occur by selective choices of proteins on the cell surface. Judging from a numerical study, we did years ago on YBCO, with doping. We found with a large enough VB hole density, the exciton induced superconducting gap can easily lead to <em>T</em><em>c</em> in the room temperature range. In fact by EMF excitation can increase the exciton pressure and trigger the ODLRO transition <em>T</em><em>c</em> upward. In fact, numerical results then suggest there do exist coherent EMF spectra from three key elements: Water, Carbon and Hydrogen, together with Oxygen, as studied over the years by numerous people, starting from Schr<span style="white-space:nowrap;">ö</span>dinger to most recently Geesink.展开更多
This work presents a new velocity search algorithm for designing a condenser of a 1200 MWe large-scale nuclear power plant situated in tropical region.For this,the condenser pressure was considered in the range of 7.5...This work presents a new velocity search algorithm for designing a condenser of a 1200 MWe large-scale nuclear power plant situated in tropical region.For this,the condenser pressure was considered in the range of 7.5-15 kPa while its tube inner diameter was taken as 28 mm with 1 mm tube wall thickness.Both longitudinal and transverse condensers with multiple shell tanks and varied shell tank lengths from 8-14 m have been considered in this work.Three different tertiary coolant temperature rises were chosen as 4°C,8°C and 12°C by considering tropical region average reservoir water temperature range of 28°C to 32°C during summer.Velocity of tertiary coolant was kept within 0.75-1.5 m/s to ensure sufficient turbulence to avoid erosion-corrosion of the tubes.Numerical simulation has been employed to obtain tube-side pressure drop and convection heat transfer coefficient directly from tertiary coolant inlet velocity using κ-ω turbulent flow model.A new iterative“Velocity-search algorithm”has been developed that focuses on finding the correct tertiary coolant velocity instead of overall heat transfer coefficient.Results revealed that velocity-search algorithm yielded very close to the important physical and thermal parameters of condenser compared to the existing design data in large scale nuclear power plants.Velocity-search algorithm has given less number of condenser design physical parameters that meets the velocity acceptance criteria for longitudinal condenser compared to the transverse condenser.Finally,velocity-search algorithm is found to be more reliable,robust,and consistent for condenser design compared to the conventional design algorithm used in Log-Mean Temperature Difference method.展开更多
We study the properties of QCD vacuum state in this paper. The values of various local quark vacuum condensates, quark-gluon mixed vacuum condensates, and the structure of non-local quark vacuum condensate are predict...We study the properties of QCD vacuum state in this paper. The values of various local quark vacuum condensates, quark-gluon mixed vacuum condensates, and the structure of non-local quark vacuum condensate are predicted by the solution of Dyson-Schwinger Equations in "rainbow" approximation with three sets of different parameters for effective gluon propagator. The light quark virtuality is also obtained in a consistent way. Our all theoretical results here are in good agreement with the empirical values used widely in literature and many other theoretical calculations.展开更多
We studied the condensate mass of QCD vacuum through the duality approach via dilaton wall back-ground in the presence of the parameter c,which represents the condensation in a holographic set up.First,fromWilson line...We studied the condensate mass of QCD vacuum through the duality approach via dilaton wall back-ground in the presence of the parameter c,which represents the condensation in a holographic set up.First,fromWilson line calculation,we found m_(0)^(2)(i.e.,the condensate parameter in mixed non-local condensation),whose beha-vior mimics that of QCD.The value of m_(0)^(2)that we found by this approach is in agreement with QCD data.Second we considered the produced mass m via the Schwinger effect mechanism in the presence of the parameter c.We show that vacuum condensation generally contributes the mass dominantly and that the produced mass via Schwing.er effect is suppressed by m_(0).展开更多
Based on the Dyson-Schwinger Equations (DSEs), the two-quark vacuum condensate, the four-quark vacuum condensate, and the quark gluon mixed vacuum condensate in the non-perturbative QCD vacuum state are investigated...Based on the Dyson-Schwinger Equations (DSEs), the two-quark vacuum condensate, the four-quark vacuum condensate, and the quark gluon mixed vacuum condensate in the non-perturbative QCD vacuum state are investigated by solving the DSEs with rainbow truncation at zero- and finite- temperature, respectively. These condensates are important input parameters in QCD sum rule with zero and finite temperature, and in studying hadron physics, as well as predicting the quark mean squared momentum rn02- also called quark virtuality in the QCD vacuum state. The present calculated results show that these physical quantities are almost independent of the temperature below the critical point temperature Tc=131 MeV, and above Tc the chiral symmetry is restored. For comparison we calculate the temperature dependence of the "in-hadron condensate" for pion. At the same time, we also calculate the ratio of the quark gluon mixed vacuum condensate to the two-quark vacuum condensate by using these condensates, and the unknown quark mean squared momentum in the QCD vacuum state has been obtained. The results show that the ratio m2/0(T) is almost fiat in the temperature region from 0 to To, although there are drastic changes of the quark vacuum condensate and the quark gluon mixed vacuum condensate at the region. Our predicted ratio comes out to be m2/0(T)=2.41 GeV2 at the Chiral limit, which is consistent with other theory model predictions, and strongly indicates the significance that the quark gluon mixed vacuum condensate has played in the virtuality calculations.展开更多
On the basis of assuming that the narrow state X(3872) is a molecule state consisting of D0 and D*0, we apply the Mandelstam generalization of the Ge11-Mann-Low method to calculate the matrix element of quark curre...On the basis of assuming that the narrow state X(3872) is a molecule state consisting of D0 and D*0, we apply the Mandelstam generalization of the Ge11-Mann-Low method to calculate the matrix element of quark current between the heavy meson states described by Bether-Salpeter wave function. In calculation of the matrix element of quark current the operator product expansion is used in order to include the nonperturbative contribution of the vacuum condensates. In this scheme we calculate the mass of X(3872). We believe that this scheme is closer to QCD than the previous work.展开更多
基金National Natural Science Foundation of China under Grant Nos.10647002 and 10565001the Natural Science Foundation of Guangxi under Grant Nos.0575020,0542042,and 0481030
文摘We study vacuum of QCD in this work.The structure of non-local quark vacuum condensate,values ofvarious local quark and gluon vacuum condensates,quark-gluon mixed vacuum condensate,quark and gluon virtualityin QCD vacuum state,quark dynamical mass and susceptibility of QCD vacuum state to external field are predicted byuse of the solutions of Dyson Schwinger equations in'rainbow'approximation with a modeling gluon propagator andthree different sets of quark-quark interaction parameters.Our theoretical predictions are in good agreement with thecorrespondent empirical values used widely in literature,and many other theoretical calculations.The quark propagatorand self-energy functions are also obtained from the numerical solutions of Dyson-Schwinger equations.This work iscentrally important for studying non-perturbative QCD,and has many important applications both in particle andnuclear physics.
文摘We propose that the QCD vacuum pion tetrahedron condensate density vary in space and drops to extremely low values in the Kennan, Barger and Cowie (KBC) void in analogy to earth’s atmospheric density drop with elevation from earth. We propose a formula for the gravitation acceleration based on the non-uniform pion tetrahedron condensate. Gravity may be due to the underlying microscopic attraction between quarks and antiquarks, which are part of the vacuum pion tetrahedron condensate. We propose an electron tetrahedron model, where electrons are comprised of tetraquark tetrahedrons, and . The quarks determine the negative electron charge and the or quarks determine the electron two spin states. The electron tetrahedron may perform a high frequency quark exchange reactions with the pion tetrahedron condensate by tunneling through the condensation gap creating a delocalized electron cloud with a fixed spin. The pion tetrahedron may act as a QCD glue bonding electron pairs in atoms and molecules and protons to neutrons in the nuclei. Conservation of valence quarks and antiquarks is proposed.
基金The project supported in part by National Natural Science Foundation of China under Grant Nos.10647002 and 10565001Natural Science Foundation of Guangxi Province under Grant Nos.0542042,0481030,and 0575020Guangxi University of Technology under Grant No.05006
文摘Based on the Global Color Symmetry Model, the non-perturbative Q, CD vacuum is investigated in the parameterized fully dressed quark propagator. Our theoretical predictions for various quantities characterized the QCD vacuum are in agreement with those predicted by many other phenomenologieal QCD inspired models. The successful predictions clearly indicate the extensive validity of our parameterized quark propagator used here. A detailed discussion on the arbitrariness in determining the integration cut-off parameter ofμ in calculating QCD vacuum condensates and a good method, which avoided the dependence of calculating results on the cut-off parameter is also strongly recommended to readers.
文摘In this paper, we briefly go over the homogeneous 5D model field theory: from the 5D space-time inception, to its quantum field solutions given in terms of Higgs vacuum, filled with magnetic monopole bose fields of all energies. Then through the space dimension reduction projections, the Gell-Mann standard model was obtained as well as a quantum to Classical connection was made via introducing Bose distribution to the monopoles to obtain the Perelman entropy and Ricci Flow mappings. This provided us a picture to the creation of Astronomical objects, from galaxies to stars and planets. This method of splitting the monopole energy into ranges is extended to show that below the basic rest mass range of the electron and Quark, it still can be applied to explaining for the creation of the chemical elements periodic table. But perhaps the most interesting is in the lowest hundreds of Hz energy range, obtained from yet another 3 fold space symmetry breaking, into 2D × 1D, producing bio nitrogenous bases composed of 3 Carbon 12 in hexagon structures, due to preservation of the 1D monopole standing waves of this low frequencies. From that by imposing gauge changes the monopole states into DNA spectra. Since such spectra states retain the DLRO, it induces formation of charge carriers periodicity in a spherical bio cell.. It was then argued that due to cell’s surface proteins, the structure must contain partial filled VB, with “p” state hole density, and empty CB, separated from VB by a positive band gap. Such band structures resemble known HTC Cuprate ceramics. Since the HTC goes through a Superconductivity transition via the simultaneous bose exciton condensation, providing a Coulomb pressure, which reduces the band gap substantially, and induces the ODLRO transition of the hole density. The same obviously applies to the bio cells. Because of the near continuous exciton levels generated, a matching to the DNA spectra then can always occur by selective choices of proteins on the cell surface. Judging from a numerical study, we did years ago on YBCO, with doping. We found with a large enough VB hole density, the exciton induced superconducting gap can easily lead to <em>T</em><em>c</em> in the room temperature range. In fact by EMF excitation can increase the exciton pressure and trigger the ODLRO transition <em>T</em><em>c</em> upward. In fact, numerical results then suggest there do exist coherent EMF spectra from three key elements: Water, Carbon and Hydrogen, together with Oxygen, as studied over the years by numerous people, starting from Schr<span style="white-space:nowrap;">ö</span>dinger to most recently Geesink.
基金The authors would like to thank Department of Nuclear Engineering,University of Dhaka for providing necessary laboratory facilities.This work has not received any sort of grant or funding from any individual or organization.
文摘This work presents a new velocity search algorithm for designing a condenser of a 1200 MWe large-scale nuclear power plant situated in tropical region.For this,the condenser pressure was considered in the range of 7.5-15 kPa while its tube inner diameter was taken as 28 mm with 1 mm tube wall thickness.Both longitudinal and transverse condensers with multiple shell tanks and varied shell tank lengths from 8-14 m have been considered in this work.Three different tertiary coolant temperature rises were chosen as 4°C,8°C and 12°C by considering tropical region average reservoir water temperature range of 28°C to 32°C during summer.Velocity of tertiary coolant was kept within 0.75-1.5 m/s to ensure sufficient turbulence to avoid erosion-corrosion of the tubes.Numerical simulation has been employed to obtain tube-side pressure drop and convection heat transfer coefficient directly from tertiary coolant inlet velocity using κ-ω turbulent flow model.A new iterative“Velocity-search algorithm”has been developed that focuses on finding the correct tertiary coolant velocity instead of overall heat transfer coefficient.Results revealed that velocity-search algorithm yielded very close to the important physical and thermal parameters of condenser compared to the existing design data in large scale nuclear power plants.Velocity-search algorithm has given less number of condenser design physical parameters that meets the velocity acceptance criteria for longitudinal condenser compared to the transverse condenser.Finally,velocity-search algorithm is found to be more reliable,robust,and consistent for condenser design compared to the conventional design algorithm used in Log-Mean Temperature Difference method.
基金Supported by National Natural Science Foundation of China(10647002,10565001)Natural Science Foundation of Guangxi(0575020,0542042,0481030)
文摘We study the properties of QCD vacuum state in this paper. The values of various local quark vacuum condensates, quark-gluon mixed vacuum condensates, and the structure of non-local quark vacuum condensate are predicted by the solution of Dyson-Schwinger Equations in "rainbow" approximation with three sets of different parameters for effective gluon propagator. The light quark virtuality is also obtained in a consistent way. Our all theoretical results here are in good agreement with the empirical values used widely in literature and many other theoretical calculations.
基金National Natural Science Foundation of China(11575254)the National Key Research and Development Program of China(2016YFE0130800)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(XDB34030301)ST is supported by the PIFI(2021PM0065)。
文摘We studied the condensate mass of QCD vacuum through the duality approach via dilaton wall back-ground in the presence of the parameter c,which represents the condensation in a holographic set up.First,fromWilson line calculation,we found m_(0)^(2)(i.e.,the condensate parameter in mixed non-local condensation),whose beha-vior mimics that of QCD.The value of m_(0)^(2)that we found by this approach is in agreement with QCD data.Second we considered the produced mass m via the Schwinger effect mechanism in the presence of the parameter c.We show that vacuum condensation generally contributes the mass dominantly and that the produced mass via Schwing.er effect is suppressed by m_(0).
基金Supported by National Natural Science Foundation of China(11365002)Guangxi Natural Science Foundation for Young Researchers(2013GXNSFBB053007,2011GXNSFA018140)+2 种基金Guangxi Education Department(2013ZD049)Guangxi Grant for Excellent Researchers(2011-54)Guangxi University of Science and Technology Foundation for Ph Ds(11Z16)
文摘Based on the Dyson-Schwinger Equations (DSEs), the two-quark vacuum condensate, the four-quark vacuum condensate, and the quark gluon mixed vacuum condensate in the non-perturbative QCD vacuum state are investigated by solving the DSEs with rainbow truncation at zero- and finite- temperature, respectively. These condensates are important input parameters in QCD sum rule with zero and finite temperature, and in studying hadron physics, as well as predicting the quark mean squared momentum rn02- also called quark virtuality in the QCD vacuum state. The present calculated results show that these physical quantities are almost independent of the temperature below the critical point temperature Tc=131 MeV, and above Tc the chiral symmetry is restored. For comparison we calculate the temperature dependence of the "in-hadron condensate" for pion. At the same time, we also calculate the ratio of the quark gluon mixed vacuum condensate to the two-quark vacuum condensate by using these condensates, and the unknown quark mean squared momentum in the QCD vacuum state has been obtained. The results show that the ratio m2/0(T) is almost fiat in the temperature region from 0 to To, although there are drastic changes of the quark vacuum condensate and the quark gluon mixed vacuum condensate at the region. Our predicted ratio comes out to be m2/0(T)=2.41 GeV2 at the Chiral limit, which is consistent with other theory model predictions, and strongly indicates the significance that the quark gluon mixed vacuum condensate has played in the virtuality calculations.
基金Supported in part by the National Natural Science Foundation of China under Grant No. 10335012 and the National Key Basic Research Program and Cross Science of China under Grant No. 90503011
文摘On the basis of assuming that the narrow state X(3872) is a molecule state consisting of D0 and D*0, we apply the Mandelstam generalization of the Ge11-Mann-Low method to calculate the matrix element of quark current between the heavy meson states described by Bether-Salpeter wave function. In calculation of the matrix element of quark current the operator product expansion is used in order to include the nonperturbative contribution of the vacuum condensates. In this scheme we calculate the mass of X(3872). We believe that this scheme is closer to QCD than the previous work.