In loss-of-coolant accidents,a passive containment heat removal system protects the integrity of the containment by condensing steam.As a large amount of air exists in the containment,the steam condensation heat trans...In loss-of-coolant accidents,a passive containment heat removal system protects the integrity of the containment by condensing steam.As a large amount of air exists in the containment,the steam condensation heat transfer can be significantly reduced.Based on previous research,traditional methods for enhancing pure steam condensation may not be applicable to steam–air condensation.In the present study,new methods of enhancing condensation heat transfer were adopted and several potentially enhanced heat transfer tubes,including corrugated tubes,spiral fin tubes,and ring fin tubes were designed.STAR-CCM+was used to determine the effect of enhanced heat transfer tubes on the steam condensation heat transfer.According to the calculations,the gas pressure ranged from 0.2 to 1.6 MPa,and air mass fraction ranged from 0.1 to 0.9.The effective perturbation of the high-concentration air layer was identified as the key factor for enhancing steam–air condensation heat transfer.Further,the designed corrugated tube performed well at atmospheric pressure,with a maximum enhancement of 27.4%,and performed poorly at high pressures.In the design of spiral fin tubes,special attention should be paid to the locations that may accumulate high-concentration air.Nonetheless,the ring-fin tubes generally displayed good performance under all conditions of interest,with a maximum enhancement of 24.2%.展开更多
Separate-effect experiment simulating steam direct-contact condensation on ECCS (emergency core cooling system) water in PWR (pressurized water reactor) cold legs during reflood phase of large-break LOCA (loss-of...Separate-effect experiment simulating steam direct-contact condensation on ECCS (emergency core cooling system) water in PWR (pressurized water reactor) cold legs during reflood phase of large-break LOCA (loss-of-coolant accident) was conducted in OECD/NEA ROSA Project using the LSTF (large scale test facility). A new test section was furnished in the downstream of the LSTF break unit horizontally attached to the cold leg. Significant condensation of steam appeared in a short distance from the simulated ECCS injection point, and the steam temperature in the test section decreased immediately after the initiation of the ECCS water injection. Total steam condensation rate estimated from the difference between steam flow rates at the test section inlet and outlet was in proportion to the simulated ECCS water mass flux until the complete condensation of steam. Clear images of high-speed video camera were successfully obtained on droplet behaviors through the viewer of the test section, especially for annular mist flow.展开更多
This paper presents a frame figure of the recovery system concerning waste heat of steam condensate. When steam phase changes into liquid state in the condenser, the heat equilibium equation, gas state equation, mass ...This paper presents a frame figure of the recovery system concerning waste heat of steam condensate. When steam phase changes into liquid state in the condenser, the heat equilibium equation, gas state equation, mass flow calculating equation of the jet steam and incondensable gas equation are established. The coupling function between condensate unit and recovery pump of the hot condensate with ejector is studied. The paper sets up the fluid continuity equation, heat equilibium equation and efficiency equation of the ejector and points out the technical key how the prevent hot condensate change into steam phase. When fluid passes from circulation loop through pump to export, the energy equations are obtained here. At last, signal figure of the applied examples are given and settle the techanical questions of the jet system are discussed.展开更多
James Watt contributed significantly to the development of the thermodynamics of energy conversion as a science. Several of his ideas are now integral part of thermodynamics, but Watt as their creator is not mentioned...James Watt contributed significantly to the development of the thermodynamics of energy conversion as a science. Several of his ideas are now integral part of thermodynamics, but Watt as their creator is not mentioned. This paper presents some of Watt’s concepts of energy conversion, including his thermodynamic analysis of the Newcomen steam engine that marks the beginning of thermal engineering. The analysis illuminated the causes of the enormously high heat losses in the installation and showed the ways for their reduction. This led him to a new conception of the steam engine with a separate condenser. Not less important was Watt’s determination of some physical properties of water and steam used as the working substance. In the experiments he observed the decrease of the latent heat of steam with increasing temperature and its disappearance at very high temperature led him to postulate the existence of a thermodynamic critical state of water. He introduced the work associated with volume change into thermodynamics and illustrated it graphically. Several of Watt’s numerous ideas deserve to be included into the history of the thermodynamics of energy conversion but they are rarely mentioned in the scientific literature. Arguably the most important is the First Law of Thermodynamics, which he introduced in his 1769 patent and related works in 1774 and 1778.展开更多
A low mass flux steam jet in subcooled water was experimentally investigated.The transition of flow pattern from stable jet to condensation oscillation was observed at relatively high water temperature.The axial total...A low mass flux steam jet in subcooled water was experimentally investigated.The transition of flow pattern from stable jet to condensation oscillation was observed at relatively high water temperature.The axial total pressures,the axial and radial temperature distributions were measured in the jet region.The results indicated that the pressure and temperature distributions were mainly influenced by the water temperature.The correlations corrected with water temperature were given to predict the dimen-sionless axial pressure peak distance and axial temperature distributions in the jet region,the results showed a good agreement between the predictions and experiments.Moreover,the self-similarity property of the radial temperature was obtained,which agreed well with Gauss distribution.In present work,all the dimensionless properties were mainly dependent on the water temperature but weakly on the nozzle size under a certain steam mass flux.展开更多
Two dark solitons are considered in a two-component Bose-Einstein condensate with an external magnetic trap, and effects of the trap potential on their dynamics are investigated by the numerical simulation. The result...Two dark solitons are considered in a two-component Bose-Einstein condensate with an external magnetic trap, and effects of the trap potential on their dynamics are investigated by the numerical simulation. The results show that the dark solitons attract, collide and repel periodically in two components as time changes, the time period depends strictly on the initial condition and the potential, and there are obvious self-trapping effects on the two dark solitons.展开更多
We create a Bose-Einstein condensate (BEC) of 87Rb atoms by runaway evaporative cooling in an optical trap. Two crossed infrared laser beams with a wavelength of 1064 nm are used to form an optical dipole trap. Afte...We create a Bose-Einstein condensate (BEC) of 87Rb atoms by runaway evaporative cooling in an optical trap. Two crossed infrared laser beams with a wavelength of 1064 nm are used to form an optical dipole trap. After precooling the atom samples in a quadrupole-Ioffe configuration (QUIC) trap under 1.5 #K by radio-frequency (RF) evaporative cooling, the samples are transferred into the center of the glass cell, then loaded into the optical dipole trap with 800 ms. The pure condensate with up to 1.5× 10^5 atoms is obtained over 1.17 s by lowering the power of the trap beams.展开更多
The paper presents CFD results for the transonic flow of dry and moist air through a diffuser and a compressor rotor.In both test geometries,i.e.the Sajben transonic diffuser and the NASA Rotor 37,the air humidity imp...The paper presents CFD results for the transonic flow of dry and moist air through a diffuser and a compressor rotor.In both test geometries,i.e.the Sajben transonic diffuser and the NASA Rotor 37,the air humidity impact on the structure of flows with weak shock waves was examined.The CFD simulations were performed by means of an in-house CFD code,which was the RANS-based modelling approach to compressible flow solutions.It is shown that at high values of relative humidity,above 70%,the modelling of the transonic flow field with weak shock waves by means of the dry air model may produce wrong results.展开更多
The coherence of a squeezed sodium atom laser generated from a Raman output coupler, in which the sodium atoms in Bose-Einstein condensate (BEC) interact with two light beams consisting of a weaker squeezed coherent...The coherence of a squeezed sodium atom laser generated from a Raman output coupler, in which the sodium atoms in Bose-Einstein condensate (BEC) interact with two light beams consisting of a weaker squeezed coherent probe light and a stronger classical coupling light, is investigated. The results show that in the case of a large mean number of BEC atoms and a weaker probe light field, the atom laser is antibunching, and this atom laser is second-order coherent if the number of BEC atoms in traps is large enough.展开更多
基金supported by the National Key R&D Program of China(No. 2020YFB1901405)
文摘In loss-of-coolant accidents,a passive containment heat removal system protects the integrity of the containment by condensing steam.As a large amount of air exists in the containment,the steam condensation heat transfer can be significantly reduced.Based on previous research,traditional methods for enhancing pure steam condensation may not be applicable to steam–air condensation.In the present study,new methods of enhancing condensation heat transfer were adopted and several potentially enhanced heat transfer tubes,including corrugated tubes,spiral fin tubes,and ring fin tubes were designed.STAR-CCM+was used to determine the effect of enhanced heat transfer tubes on the steam condensation heat transfer.According to the calculations,the gas pressure ranged from 0.2 to 1.6 MPa,and air mass fraction ranged from 0.1 to 0.9.The effective perturbation of the high-concentration air layer was identified as the key factor for enhancing steam–air condensation heat transfer.Further,the designed corrugated tube performed well at atmospheric pressure,with a maximum enhancement of 27.4%,and performed poorly at high pressures.In the design of spiral fin tubes,special attention should be paid to the locations that may accumulate high-concentration air.Nonetheless,the ring-fin tubes generally displayed good performance under all conditions of interest,with a maximum enhancement of 24.2%.
文摘Separate-effect experiment simulating steam direct-contact condensation on ECCS (emergency core cooling system) water in PWR (pressurized water reactor) cold legs during reflood phase of large-break LOCA (loss-of-coolant accident) was conducted in OECD/NEA ROSA Project using the LSTF (large scale test facility). A new test section was furnished in the downstream of the LSTF break unit horizontally attached to the cold leg. Significant condensation of steam appeared in a short distance from the simulated ECCS injection point, and the steam temperature in the test section decreased immediately after the initiation of the ECCS water injection. Total steam condensation rate estimated from the difference between steam flow rates at the test section inlet and outlet was in proportion to the simulated ECCS water mass flux until the complete condensation of steam. Clear images of high-speed video camera were successfully obtained on droplet behaviors through the viewer of the test section, especially for annular mist flow.
文摘This paper presents a frame figure of the recovery system concerning waste heat of steam condensate. When steam phase changes into liquid state in the condenser, the heat equilibium equation, gas state equation, mass flow calculating equation of the jet steam and incondensable gas equation are established. The coupling function between condensate unit and recovery pump of the hot condensate with ejector is studied. The paper sets up the fluid continuity equation, heat equilibium equation and efficiency equation of the ejector and points out the technical key how the prevent hot condensate change into steam phase. When fluid passes from circulation loop through pump to export, the energy equations are obtained here. At last, signal figure of the applied examples are given and settle the techanical questions of the jet system are discussed.
文摘James Watt contributed significantly to the development of the thermodynamics of energy conversion as a science. Several of his ideas are now integral part of thermodynamics, but Watt as their creator is not mentioned. This paper presents some of Watt’s concepts of energy conversion, including his thermodynamic analysis of the Newcomen steam engine that marks the beginning of thermal engineering. The analysis illuminated the causes of the enormously high heat losses in the installation and showed the ways for their reduction. This led him to a new conception of the steam engine with a separate condenser. Not less important was Watt’s determination of some physical properties of water and steam used as the working substance. In the experiments he observed the decrease of the latent heat of steam with increasing temperature and its disappearance at very high temperature led him to postulate the existence of a thermodynamic critical state of water. He introduced the work associated with volume change into thermodynamics and illustrated it graphically. Several of Watt’s numerous ideas deserve to be included into the history of the thermodynamics of energy conversion but they are rarely mentioned in the scientific literature. Arguably the most important is the First Law of Thermodynamics, which he introduced in his 1769 patent and related works in 1774 and 1778.
基金Supported by the National Natural Science Foundation of China(Grant Nos.50676078,50821064)the National High-Tech Research and Development Program of China("863" Project)(Grant No.2006AA05Z230)
文摘A low mass flux steam jet in subcooled water was experimentally investigated.The transition of flow pattern from stable jet to condensation oscillation was observed at relatively high water temperature.The axial total pressures,the axial and radial temperature distributions were measured in the jet region.The results indicated that the pressure and temperature distributions were mainly influenced by the water temperature.The correlations corrected with water temperature were given to predict the dimen-sionless axial pressure peak distance and axial temperature distributions in the jet region,the results showed a good agreement between the predictions and experiments.Moreover,the self-similarity property of the radial temperature was obtained,which agreed well with Gauss distribution.In present work,all the dimensionless properties were mainly dependent on the water temperature but weakly on the nozzle size under a certain steam mass flux.
基金the Scientific and Technological Research Program of Education Department of Hubei Province (No.Z200722001)the Middleaged and Young People Excellent Innovation Team of Science and Technology of Hubei Province (No.2003-7)the Research Program of The Hong Kong Polytechnic University (No.A-PA2Q).
文摘Two dark solitons are considered in a two-component Bose-Einstein condensate with an external magnetic trap, and effects of the trap potential on their dynamics are investigated by the numerical simulation. The results show that the dark solitons attract, collide and repel periodically in two components as time changes, the time period depends strictly on the initial condition and the potential, and there are obvious self-trapping effects on the two dark solitons.
基金supported in part by the National Natural Science Foundation of China for Distinguished Young Scholars (No. 10725416)the National Basic Research Program of China (No. 2006CB921101)+2 种基金the National Natural Science Foundation of China Project for Excellent Research Team (No. 60821004)the National Natural Science Foundation of China (No. 60678029)the Program for the Top Young and Middle-Aged Innovative Talents of Higher Learning Institutions of Shanxi
文摘We create a Bose-Einstein condensate (BEC) of 87Rb atoms by runaway evaporative cooling in an optical trap. Two crossed infrared laser beams with a wavelength of 1064 nm are used to form an optical dipole trap. After precooling the atom samples in a quadrupole-Ioffe configuration (QUIC) trap under 1.5 #K by radio-frequency (RF) evaporative cooling, the samples are transferred into the center of the glass cell, then loaded into the optical dipole trap with 800 ms. The pure condensate with up to 1.5× 10^5 atoms is obtained over 1.17 s by lowering the power of the trap beams.
基金supported by Statutory Research Funds of the Silesian University of Technology。
文摘The paper presents CFD results for the transonic flow of dry and moist air through a diffuser and a compressor rotor.In both test geometries,i.e.the Sajben transonic diffuser and the NASA Rotor 37,the air humidity impact on the structure of flows with weak shock waves was examined.The CFD simulations were performed by means of an in-house CFD code,which was the RANS-based modelling approach to compressible flow solutions.It is shown that at high values of relative humidity,above 70%,the modelling of the transonic flow field with weak shock waves by means of the dry air model may produce wrong results.
文摘The coherence of a squeezed sodium atom laser generated from a Raman output coupler, in which the sodium atoms in Bose-Einstein condensate (BEC) interact with two light beams consisting of a weaker squeezed coherent probe light and a stronger classical coupling light, is investigated. The results show that in the case of a large mean number of BEC atoms and a weaker probe light field, the atom laser is antibunching, and this atom laser is second-order coherent if the number of BEC atoms in traps is large enough.