The determination of the ultimate load-bearing capacity of structures made of elastoplastic heterogeneous materials under varying loads is of great importance for engineering analysis and design. Therefore, it is nece...The determination of the ultimate load-bearing capacity of structures made of elastoplastic heterogeneous materials under varying loads is of great importance for engineering analysis and design. Therefore, it is necessary to accurately predict the shakedown domains of these materials. The static shakedown theorem, also known as Melan's theorem, is a fundamental method used to predict the shakedown domains of structures and materials. Within this method, a key aspect lies in the construction and application of an appropriate self-equilibrium stress field(SSF). In the structural shakedown analysis, the SSF is typically constructed by governing equations that satisfy no external force(NEF) boundary conditions. However, we discover that directly applying these governing equations is not suitable for the shakedown analysis of heterogeneous materials. Researchers must consider the requirements imposed by the Hill-Mandel condition for boundary conditions and the physical significance of representative volume elements(RVEs). This paper addresses this issue and demonstrates that the sizes of SSFs vary under different boundary conditions, such as uniform displacement boundary conditions(DBCs), uniform traction boundary conditions(TBCs), and periodic boundary conditions(PBCs). As a result, significant discrepancies arise in the predicted shakedown domain sizes of heterogeneous materials. Built on the demonstrated relationship between SSFs under different boundary conditions, this study explores the conservative relationships among different shakedown domains, and provides proof of the relationship between the elastic limit(EL) factors and the shakedown loading factors under the loading domain of two load vertices. By utilizing numerical examples, we highlight the conservatism present in certain results reported in the existing literature. Among the investigated boundary conditions, the obtained shakedown domain is the most conservative under TBCs.Conversely, utilizing PBCs to construct an SSF for the shakedown analysis leads to less conservative lower bounds, indicating that PBCs should be employed as the preferred boundary conditions for the shakedown analysis of heterogeneous materials.展开更多
A two-dimensional (2D) fluid model is presented to study the behavior of silicon plasma mixed with SiH4 , N2 , and NH3 in a radio-frequency capacitively coupled plasma (CCP) reactor. The plasma–wall interaction ...A two-dimensional (2D) fluid model is presented to study the behavior of silicon plasma mixed with SiH4 , N2 , and NH3 in a radio-frequency capacitively coupled plasma (CCP) reactor. The plasma–wall interaction (including the deposition) is modeled by using surface reaction coefficients. In the present paper we try to identify, by numerical simulations, the effect of variations of the process parameters on the plasma properties. It is found from our simulations that by increasing the gas pressure and the discharge gap, the electron density profile shape changes continuously from an edge-high to a center-high, thus the thin films become more uniform. Moreover, as the N2 /NH3 ratio increases from 6/13 to 10/9, the hydrogen content can be significantly decreased, without decreasing the electron density significantly.展开更多
Of concern is the scenario of a heat equation on a domain that contains a thin layer,on which the thermal conductivity is drastically different from that in the bulk.The multi-scales in the spatial variable and the th...Of concern is the scenario of a heat equation on a domain that contains a thin layer,on which the thermal conductivity is drastically different from that in the bulk.The multi-scales in the spatial variable and the thermal conductivity lead to computational difficulties,so we may think of the thin layer as a thickless surface,on which we impose"effective boundary conditions"(EBCs).These boundary conditions not only ease the computational burden,but also reveal the effect of the inclusion.In this paper,by considering the asymptotic behavior of the heat equation with interior inclusion subject to Dirichlet boundary condition,as the thickness of the thin layer shrinks,we derive,on a closed curve inside a two-dimensional domain,EBCs which include a Poisson equation on the curve,and a non-local one.It turns out that the EBCs depend on the magnitude of the thermal conductivity in the thin layer,compared to the reciprocal of its thickness.展开更多
The effects of the reaction temperature, the crosslinking degree of the matrix, the pore-forming agent and the initial concentration of PVA on the kinetic properties of the complex-resins were investigated. The ion-ex...The effects of the reaction temperature, the crosslinking degree of the matrix, the pore-forming agent and the initial concentration of PVA on the kinetic properties of the complex-resins were investigated. The ion-exchange rate of the complex-resin for L-lysine chlorate was three-fold that of 001×8 resin and two-fold that of D61 resin.展开更多
The effect of the deformation condition on the axial compressive precision forming process of tube with curling die was investigated by using a rigid-plastic FEM. The results show that the forming accuracy depends mai...The effect of the deformation condition on the axial compressive precision forming process of tube with curling die was investigated by using a rigid-plastic FEM. The results show that the forming accuracy depends mainly on geometric condition rp/d0, little on tube material properties and friction condition; the relative gap △/2rp of double-walled tubes obtained decreases with Increasing rp/d0, and there is a parameter k for a given to/do or rp/t0, when rp/d0 >k, △/2rp< 1, otherwise △/2rp>1.展开更多
[Objective] The paper aims to study the effect of weather on rice production in Guangxi. [Method] The authors evaluated the effect of weather and weather disasters in Guangxi on rice production by comparison and analy...[Objective] The paper aims to study the effect of weather on rice production in Guangxi. [Method] The authors evaluated the effect of weather and weather disasters in Guangxi on rice production by comparison and analysis in terms of temperature,rain and sunlight in 2009. [Result] The study summarized the main favorable and unfavorable weather conditions of rice growth,and proposed the measures and suggestions to tend to interest and avoid harm on rice production in Guangxi. [Conclusion] This study provides references to the evaluations about effect of weather in Guangxi on rice production and suggestions on how to reduce weather disasters influence and ensure rice production security.展开更多
The present investigation addresses the simultaneous effects of heat and mass transfer in the mixed convection peristaltic flow of viscous fluid in an asymmetric channel. The channel walls exhibit the convective bound...The present investigation addresses the simultaneous effects of heat and mass transfer in the mixed convection peristaltic flow of viscous fluid in an asymmetric channel. The channel walls exhibit the convective boundary conditions. In addition, the effects due to Soret and Dufour are taken into consideration. Resulting problems are solved for the series solutions. Numerical values of heat and mass transfer rates are displayed and studied. Results indicate that the concentration and temperature of the fluid increase whereas the mass transfer rate at the wall decreases with increase of the mass transfer Biot number. Furthermore, it is observed that the temperature decreases with the increase of the heat transfer Biot number.展开更多
基金Project supported by the National Natural Science Foundation of China (Nos. 52075070 and12302254)the Dalian City Supports Innovation and Entrepreneurship Projects for High-Level Talents (No. 2021RD16)the Liaoning Revitalization Talents Program (No. XLYC2002108)。
文摘The determination of the ultimate load-bearing capacity of structures made of elastoplastic heterogeneous materials under varying loads is of great importance for engineering analysis and design. Therefore, it is necessary to accurately predict the shakedown domains of these materials. The static shakedown theorem, also known as Melan's theorem, is a fundamental method used to predict the shakedown domains of structures and materials. Within this method, a key aspect lies in the construction and application of an appropriate self-equilibrium stress field(SSF). In the structural shakedown analysis, the SSF is typically constructed by governing equations that satisfy no external force(NEF) boundary conditions. However, we discover that directly applying these governing equations is not suitable for the shakedown analysis of heterogeneous materials. Researchers must consider the requirements imposed by the Hill-Mandel condition for boundary conditions and the physical significance of representative volume elements(RVEs). This paper addresses this issue and demonstrates that the sizes of SSFs vary under different boundary conditions, such as uniform displacement boundary conditions(DBCs), uniform traction boundary conditions(TBCs), and periodic boundary conditions(PBCs). As a result, significant discrepancies arise in the predicted shakedown domain sizes of heterogeneous materials. Built on the demonstrated relationship between SSFs under different boundary conditions, this study explores the conservative relationships among different shakedown domains, and provides proof of the relationship between the elastic limit(EL) factors and the shakedown loading factors under the loading domain of two load vertices. By utilizing numerical examples, we highlight the conservatism present in certain results reported in the existing literature. Among the investigated boundary conditions, the obtained shakedown domain is the most conservative under TBCs.Conversely, utilizing PBCs to construct an SSF for the shakedown analysis leads to less conservative lower bounds, indicating that PBCs should be employed as the preferred boundary conditions for the shakedown analysis of heterogeneous materials.
基金Project supported by the China Postdoctoral Science Foundation (Grant No. 2012M511603)the National Natural Science Foundation of China (Grant Nos. 11105057 and 10775025)+1 种基金the Natural Science Foundation of Hubei Province of China (Grant No. 2007ABA035)the Program for New Century Excellent Talents in University of China (Grant No. NCET-08-0073)
文摘A two-dimensional (2D) fluid model is presented to study the behavior of silicon plasma mixed with SiH4 , N2 , and NH3 in a radio-frequency capacitively coupled plasma (CCP) reactor. The plasma–wall interaction (including the deposition) is modeled by using surface reaction coefficients. In the present paper we try to identify, by numerical simulations, the effect of variations of the process parameters on the plasma properties. It is found from our simulations that by increasing the gas pressure and the discharge gap, the electron density profile shape changes continuously from an edge-high to a center-high, thus the thin films become more uniform. Moreover, as the N2 /NH3 ratio increases from 6/13 to 10/9, the hydrogen content can be significantly decreased, without decreasing the electron density significantly.
基金NSF of China(No.11701180)Fundamental Research Funds for the Central Universities(No.19lgpy232)supported by NSF of China(Nos.11671190,11731005)。
文摘Of concern is the scenario of a heat equation on a domain that contains a thin layer,on which the thermal conductivity is drastically different from that in the bulk.The multi-scales in the spatial variable and the thermal conductivity lead to computational difficulties,so we may think of the thin layer as a thickless surface,on which we impose"effective boundary conditions"(EBCs).These boundary conditions not only ease the computational burden,but also reveal the effect of the inclusion.In this paper,by considering the asymptotic behavior of the heat equation with interior inclusion subject to Dirichlet boundary condition,as the thickness of the thin layer shrinks,we derive,on a closed curve inside a two-dimensional domain,EBCs which include a Poisson equation on the curve,and a non-local one.It turns out that the EBCs depend on the magnitude of the thermal conductivity in the thin layer,compared to the reciprocal of its thickness.
基金Supported by the Tianjin scientific youth fund for 21th centrury
文摘The effects of the reaction temperature, the crosslinking degree of the matrix, the pore-forming agent and the initial concentration of PVA on the kinetic properties of the complex-resins were investigated. The ion-exchange rate of the complex-resin for L-lysine chlorate was three-fold that of 001×8 resin and two-fold that of D61 resin.
基金The authors would like to thank NSFC for support toenable the performing of this research (No. 59775055).
文摘The effect of the deformation condition on the axial compressive precision forming process of tube with curling die was investigated by using a rigid-plastic FEM. The results show that the forming accuracy depends mainly on geometric condition rp/d0, little on tube material properties and friction condition; the relative gap △/2rp of double-walled tubes obtained decreases with Increasing rp/d0, and there is a parameter k for a given to/do or rp/t0, when rp/d0 >k, △/2rp< 1, otherwise △/2rp>1.
基金Supported by Guangxi Natural Fund Project (0832204 )Guangxi Agricultural Key Technological Project (200702)~~
文摘[Objective] The paper aims to study the effect of weather on rice production in Guangxi. [Method] The authors evaluated the effect of weather and weather disasters in Guangxi on rice production by comparison and analysis in terms of temperature,rain and sunlight in 2009. [Result] The study summarized the main favorable and unfavorable weather conditions of rice growth,and proposed the measures and suggestions to tend to interest and avoid harm on rice production in Guangxi. [Conclusion] This study provides references to the evaluations about effect of weather in Guangxi on rice production and suggestions on how to reduce weather disasters influence and ensure rice production security.
基金the Higher Education Commission of Pakistan (HEC) for the financial support through Indigenous program
文摘The present investigation addresses the simultaneous effects of heat and mass transfer in the mixed convection peristaltic flow of viscous fluid in an asymmetric channel. The channel walls exhibit the convective boundary conditions. In addition, the effects due to Soret and Dufour are taken into consideration. Resulting problems are solved for the series solutions. Numerical values of heat and mass transfer rates are displayed and studied. Results indicate that the concentration and temperature of the fluid increase whereas the mass transfer rate at the wall decreases with increase of the mass transfer Biot number. Furthermore, it is observed that the temperature decreases with the increase of the heat transfer Biot number.