Different operating conditions (e.g. design and off-design) may lead to a significant difference in the hydrodynamics performance of a ship, especially in the total resistance and wake field of ships. This work inve...Different operating conditions (e.g. design and off-design) may lead to a significant difference in the hydrodynamics performance of a ship, especially in the total resistance and wake field of ships. This work investigated the hydrodynamic performance of the well-known KRISO 3600 TEU Container Ship (KCS) under three different operating conditions by means of Particle Image Velocimetry (P/V) and Computational Fluid Dynamics (CFD). The comparison results show that the use of PIV to measure a ship's nominal wake field is an important method which has the advantages of being contactless and highly accurate. Acceptable agreements between the results obtained by the two different methods are achieved. Results indicate that the total resistances of the KCS model under two off-design conditions are 23.88% and 13.92% larger than that under the designed condition, respectively.展开更多
Ship floating condition in regular waves is calculated. New equations controlling any ship's floating condition are proposed by use of the vector operation. This form is a nonlinear optimization problem which can be ...Ship floating condition in regular waves is calculated. New equations controlling any ship's floating condition are proposed by use of the vector operation. This form is a nonlinear optimization problem which can be solved using the penalty function method with constant coefficients. And the solving process is accelerated by dichotomy. During the solving process, the ship's displacement and buoyant centre have been calculated by the integration of the ship surface according to the waterline. The ship surface is described using an accumulative chord length theory in order to determine the displacement, the buoyancy center and the waterline. The draught forming the waterline at each station can be found out by calculating the intersection of the ship surface and the wave surface. The results of an example indicate that this method is exact and efficient. It can calculate the ship floating condition in regular waves as well as simplify the calculation and improve the computational efficiency and the precision of results.展开更多
A real free surface boundary condition,taking the viscous effects and surface tension into account,is applied to the nonlinear calculation of wave making resistance.It may provide more information about the character ...A real free surface boundary condition,taking the viscous effects and surface tension into account,is applied to the nonlinear calculation of wave making resistance.It may provide more information about the character of the nonlinear ship wave and be helpful to improving the stability,convergence and local wave profile in potential calculation of the nonlinear ship wave.The wave making calculations for Series 60 are presented.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.41176074,51209048,51379043,and 51409063)the High Technology Ship Scientific Research Project of Ministry of Industry and Information Technology of China(Grant No.G014613002)
文摘Different operating conditions (e.g. design and off-design) may lead to a significant difference in the hydrodynamics performance of a ship, especially in the total resistance and wake field of ships. This work investigated the hydrodynamic performance of the well-known KRISO 3600 TEU Container Ship (KCS) under three different operating conditions by means of Particle Image Velocimetry (P/V) and Computational Fluid Dynamics (CFD). The comparison results show that the use of PIV to measure a ship's nominal wake field is an important method which has the advantages of being contactless and highly accurate. Acceptable agreements between the results obtained by the two different methods are achieved. Results indicate that the total resistances of the KCS model under two off-design conditions are 23.88% and 13.92% larger than that under the designed condition, respectively.
基金financially supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(Grant No.51321065)the Research Fund of State Key Laboratory of Ocean Engineering of Shanghai Jiao Tong University(Grant No.1104)
文摘Ship floating condition in regular waves is calculated. New equations controlling any ship's floating condition are proposed by use of the vector operation. This form is a nonlinear optimization problem which can be solved using the penalty function method with constant coefficients. And the solving process is accelerated by dichotomy. During the solving process, the ship's displacement and buoyant centre have been calculated by the integration of the ship surface according to the waterline. The ship surface is described using an accumulative chord length theory in order to determine the displacement, the buoyancy center and the waterline. The draught forming the waterline at each station can be found out by calculating the intersection of the ship surface and the wave surface. The results of an example indicate that this method is exact and efficient. It can calculate the ship floating condition in regular waves as well as simplify the calculation and improve the computational efficiency and the precision of results.
文摘A real free surface boundary condition,taking the viscous effects and surface tension into account,is applied to the nonlinear calculation of wave making resistance.It may provide more information about the character of the nonlinear ship wave and be helpful to improving the stability,convergence and local wave profile in potential calculation of the nonlinear ship wave.The wave making calculations for Series 60 are presented.