期刊文献+
共找到1,106篇文章
< 1 2 56 >
每页显示 20 50 100
Semantic role labeling based on conditional random fields 被引量:9
1
作者 于江德 樊孝忠 +1 位作者 庞文博 余正涛 《Journal of Southeast University(English Edition)》 EI CAS 2007年第3期361-364,共4页
Due to the fact that semantic role labeling (SRL) is very necessary for deep natural language processing, a method based on conditional random fields (CRFs) is proposed for the SRL task. This method takes shallow ... Due to the fact that semantic role labeling (SRL) is very necessary for deep natural language processing, a method based on conditional random fields (CRFs) is proposed for the SRL task. This method takes shallow syntactic parsing as the foundation, phrases or named entities as the labeled units, and the CRFs model is trained to label the predicates' semantic roles in a sentence. The key of the method is parameter estimation and feature selection for the CRFs model. The L-BFGS algorithm was employed for parameter estimation, and three category features: features based on sentence constituents, features based on predicate, and predicate-constituent features as a set of features for the model were selected. Evaluation on the datasets of CoNLL-2005 SRL shared task shows that the method can obtain better performance than the maximum entropy model, and can achieve 80. 43 % precision and 63. 55 % recall for semantic role labeling. 展开更多
关键词 semantic role labeling conditional random fields parameter estimation feature selection
下载PDF
TONE MODELING BASED ON HIDDEN CONDITIONAL RANDOM FIELDS AND DISCRIMINATIVE MODEL WEIGHT TRAINING 被引量:1
2
作者 黄浩 朱杰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第1期43-50,共8页
The use of hidden conditional random fields (HCRFs) for tone modeling is explored. The tone recognition performance is improved using HCRFs by taking advantage of intra-syllable dynamic, inter-syllable dynamic and d... The use of hidden conditional random fields (HCRFs) for tone modeling is explored. The tone recognition performance is improved using HCRFs by taking advantage of intra-syllable dynamic, inter-syllable dynamic and duration features. When the tone model is integrated into continuous speech recognition, the discriminative model weight training (DMWT) is proposed. Acoustic and tone scores are scaled by model weights discriminatively trained by the minimum phone error (MPE) criterion. Two schemes of weight training are evaluated and a smoothing technique is used to make training robust to overtraining problem. Experiments show that the accuracies of tone recognition and large vocabulary continuous speech recognition (LVCSR) can be improved by the HCRFs based tone model. Compared with the global weight scheme, continuous speech recognition can be improved by the discriminative trained weight combinations. 展开更多
关键词 speech recognition MODELS hidden conditional random fields minimum phone error
下载PDF
A CONDITIONAL RANDOM FIELDS APPROACH TO BIOMEDICAL NAMED ENTITY RECOGNITION 被引量:4
3
作者 Wang Haochang Zhao Tiejun Li Sheng Yu Hao 《Journal of Electronics(China)》 2007年第6期838-844,共7页
Named entity recognition is a fundamental task in biomedical data mining. In this letter, a named entity recognition system based on CRFs (Conditional Random Fields) for biomedical texts is presented. The system mak... Named entity recognition is a fundamental task in biomedical data mining. In this letter, a named entity recognition system based on CRFs (Conditional Random Fields) for biomedical texts is presented. The system makes extensive use of a diverse set of features, including local features, full text features and external resource features. All features incorporated in this system are described in detail, and the impacts of different feature sets on the performance of the system are evaluated. In order to improve the performance of system, post-processing modules are exploited to deal with the abbreviation phenomena, cascaded named entity and boundary errors identification. Evaluation on this system proved that the feature selection has important impact on the system performance, and the post-processing explored has an important contribution on system performance to achieve better resuits. 展开更多
关键词 conditional random fields (crfs Named entity recognition Feature selection Post-processing
下载PDF
Power entity recognition based on bidirectional long short-term memory and conditional random fields 被引量:8
4
作者 Zhixiang Ji Xiaohui Wang +1 位作者 Changyu Cai Hongjian Sun 《Global Energy Interconnection》 2020年第2期186-192,共7页
With the application of artificial intelligence technology in the power industry,the knowledge graph is expected to play a key role in power grid dispatch processes,intelligent maintenance,and customer service respons... With the application of artificial intelligence technology in the power industry,the knowledge graph is expected to play a key role in power grid dispatch processes,intelligent maintenance,and customer service response provision.Knowledge graphs are usually constructed based on entity recognition.Specifically,based on the mining of entity attributes and relationships,domain knowledge graphs can be constructed through knowledge fusion.In this work,the entities and characteristics of power entity recognition are analyzed,the mechanism of entity recognition is clarified,and entity recognition techniques are analyzed in the context of the power domain.Power entity recognition based on the conditional random fields (CRF) and bidirectional long short-term memory (BLSTM) models is investigated,and the two methods are comparatively analyzed.The results indicated that the CRF model,with an accuracy of 83%,can better identify the power entities compared to the BLSTM.The CRF approach can thus be applied to the entity extraction for knowledge graph construction in the power field. 展开更多
关键词 Knowledge graph Entity recognition conditional random fields(crf) Bidirectional Long Short-Term Memory(BLSTM)
下载PDF
Adaptive foreground and shadow segmentation using hidden conditional random fields 被引量:1
5
作者 CHU Yi-ping YE Xiu-zi +2 位作者 QIAN Jiang ZHANG Yin ZHANG San-yuan 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第4期586-592,共7页
Video object segmentation is important for video surveillance, object tracking, video object recognition and video editing. An adaptive video segmentation algorithm based on hidden conditional random fields (HCRFs) is... Video object segmentation is important for video surveillance, object tracking, video object recognition and video editing. An adaptive video segmentation algorithm based on hidden conditional random fields (HCRFs) is proposed, which models spatio-temporal constraints of video sequence. In order to improve the segmentation quality, the weights of spatio-temporal con- straints are adaptively updated by on-line learning for HCRFs. Shadows are the factors affecting segmentation quality. To separate foreground objects from the shadows they cast, linear transform for Gaussian distribution of the background is adopted to model the shadow. The experimental results demonstrated that the error ratio of our algorithm is reduced by 23% and 19% respectively, compared with the Gaussian mixture model (GMM) and spatio-temporal Markov random fields (MRFs). 展开更多
关键词 Video segmentation Shadow elimination Hidden conditional random fields (Hcrfs) On-line learning
下载PDF
A Remote Sensing Image Semantic Segmentation Method by Combining Deformable Convolution with Conditional Random Fields 被引量:12
6
作者 Zongcheng ZUO Wen ZHANG Dongying ZHANG 《Journal of Geodesy and Geoinformation Science》 2020年第3期39-49,共11页
Currently,deep convolutional neural networks have made great progress in the field of semantic segmentation.Because of the fixed convolution kernel geometry,standard convolution neural networks have been limited the a... Currently,deep convolutional neural networks have made great progress in the field of semantic segmentation.Because of the fixed convolution kernel geometry,standard convolution neural networks have been limited the ability to simulate geometric transformations.Therefore,a deformable convolution is introduced to enhance the adaptability of convolutional networks to spatial transformation.Considering that the deep convolutional neural networks cannot adequately segment the local objects at the output layer due to using the pooling layers in neural network architecture.To overcome this shortcoming,the rough prediction segmentation results of the neural network output layer will be processed by fully connected conditional random fields to improve the ability of image segmentation.The proposed method can easily be trained by end-to-end using standard backpropagation algorithms.Finally,the proposed method is tested on the ISPRS dataset.The results show that the proposed method can effectively overcome the influence of the complex structure of the segmentation object and obtain state-of-the-art accuracy on the ISPRS Vaihingen 2D semantic labeling dataset. 展开更多
关键词 high-resolution remote sensing image semantic segmentation deformable convolution network conditions random fields
下载PDF
A conditional random fields approach to Chinese pinyin-to-character conversion 被引量:1
7
作者 LI Lu WANG Xuan WANG Xiao-long YU Yan-bing 《通讯和计算机(中英文版)》 2009年第4期25-31,共7页
关键词 随机场 汉语拼音 字符转换 特征空间
下载PDF
Fast Chinese syntactic parsing method based on conditional random fields
8
作者 韩磊 罗森林 +1 位作者 陈倩柔 潘丽敏 《Journal of Beijing Institute of Technology》 EI CAS 2015年第4期519-525,共7页
A fast method for phrase structure grammar analysis is proposed based on conditional ran- dom fields (CRF). The method trains several CRF classifiers for recognizing the phrase nodes at dif- ferent levels, and uses ... A fast method for phrase structure grammar analysis is proposed based on conditional ran- dom fields (CRF). The method trains several CRF classifiers for recognizing the phrase nodes at dif- ferent levels, and uses the bottom-up to connect the recognized phrase nodes to construct the syn- tactic tree. On the basis of Beijing forest studio Chinese tagged corpus, two experiments are de- signed to select the training parameters and verify the validity of the method. The result shows that the method costs 78. 98 ms and 4. 63 ms to train and test a Chinese sentence of 17. 9 words. The method is a new way to parse the phrase structure grammar for Chinese, and has good generalization ability and fast speed. 展开更多
关键词 phrase structure grammar syntactic tree syntactic parsing conditional random field
下载PDF
Standardization of Robot Instruction Elements Based on Conditional Random Fields and Word Embeddin
9
作者 Hengsheng Wang Zhengang Zhang +1 位作者 Jin Ren Tong Liu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2019年第5期32-40,共9页
Natural language processing has got great progress recently. Controlling robots with spoken natural language has become expectable. With the reliability problem of this kind of control in mind a confirmation process o... Natural language processing has got great progress recently. Controlling robots with spoken natural language has become expectable. With the reliability problem of this kind of control in mind a confirmation process of natural language instruction should be included before carried out by the robot autonomously and the prototype dialog system was designed thus the standardization problem was raised for the natural and understandable language interaction. In the application background of remotely navigating a mobile robot inside a building with Chinese natural spoken language considering that as an important navigation element in instructions a place name can be expressed with different lexical terms in spoken language this paper proposes a model for substituting different alternatives of a place name with a standard one (called standardization). First a CRF (Conditional Random Fields) model is trained to label the term required be standardized then a trained word embedding model is to represent lexical terms as digital vectors. In the vector space similarity of lexical terms is defined and used to find out the most similar one to the term picked out to be standardized. Experiments show that the method proposed works well and the dialog system responses to confirm the instructions are natural and understandable. 展开更多
关键词 WORD embedding conditional random fields ( crfs ) STANDARDIZATION interaction Chinese NATURAL Spoken LANGUAGE (CNSL) NATURAL LANGUAGE Processing (NLP) human-robot
下载PDF
Enhanced Identifying Gene Names from Biomedical Literature with Conditional Random Fields
10
作者 Wei-Zhong Qian Chong Fu Hong-Rong Cheng Qiao Liu Zhi-Guang Qin 《Journal of Electronic Science and Technology of China》 2009年第3期227-231,共5页
Identifying gene names is an attractive research area of biology computing. However, accurate extraction of gene names is a challenging task with the lack of conventions for describing gene names. We devise a systemat... Identifying gene names is an attractive research area of biology computing. However, accurate extraction of gene names is a challenging task with the lack of conventions for describing gene names. We devise a systematical architecture and apply the model using conditional random fields (CRFs) for extracting gene names from Medline. In order to improve the performance, biomedical ontology features are inserted into the model and post processing including boundary adjusting and word filter is presented to solve name overlapping problem and remove false positive single words. Pure string match method, baseline CRFs, and CRFs with our methods are applied to human gene names and HIV gene names extraction respectively in 1100 abstracts of Medline and their performances are contrasted. Results show that CRFs are robust for unseen gene names. Furthermore, CRFs with our methods outperforms other methods with precision 0.818 and recall 0.812. 展开更多
关键词 conditional random fields gene nameextraction information extraction named entityrecognition
下载PDF
Detection and characterization of regulatory elements using probabilistic conditional random field and hidden Markov models 被引量:3
11
作者 Hongyan Wang Xiaobo Zhou 《Chinese Journal of Cancer》 SCIE CAS CSCD 2013年第4期186-194,共9页
By altering the electrostatic charge of histones or providing binding sites to protein recognition molecules, Chromatin marks have been proposed to regulate gene expression, a property that has motivated researchers t... By altering the electrostatic charge of histones or providing binding sites to protein recognition molecules, Chromatin marks have been proposed to regulate gene expression, a property that has motivated researchers to link these marks to cis-regulatory elements. With the help of next generation sequencing technologies, we can now correlate one specific chromatin mark with regulatory elements (e.g. enhancers or promoters) and also build tools, such as hidden Markov models, to gain insight into mark combinations. However, hidden Markov models have limitation for their character of generative models and assume that a current observation depends only on a current hidden state in the chain. Here, we employed two graphical probabilistic models, namely the linear conditional random field model and multivariate hidden Markov model, to mark gene regions with different states based on recurrent and spatially coherent character of these eight marks. Both models revealed chromatin states that may correspond to enhancers and promoters, transcribed regions, transcriptional elongation, and low-signal regions. We also found that the linear conditional random field model was more effective than the hidden Markov model in recognizing regulatory elements, such as promoter-, enhancer-, and transcriptional elongation-associated regions, which gives us a better choice. 展开更多
关键词 Epigenetics HISTONE modification conditionAL random field REGULATORY elements
下载PDF
Rockhead profile simulation using an improved generation method of conditional random field 被引量:5
12
作者 Liang Han Lin Wang +2 位作者 Wengang Zhang Boming Geng Shang Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第3期896-908,共13页
Rockhead profile is an important part of geological profiles and can have significant impacts on some geotechnical engineering practice,and thus,it is necessary to establish a useful method to reverse the rockhead pro... Rockhead profile is an important part of geological profiles and can have significant impacts on some geotechnical engineering practice,and thus,it is necessary to establish a useful method to reverse the rockhead profile using site investigation results.As a general method to reflect the spatial distribution of geo-material properties based on field measurements,the conditional random field(CRF)was improved in this paper to simulate rockhead profiles.Besides,in geotechnical engineering practice,measurements are generally limited due to the limitations of budget and time so that the estimation of the mean value can have uncertainty to some extent.As the Bayesian theory can effectively combine the measurements and prior information to deal with uncertainty,CRF was implemented with the aid of the Bayesian framework in this study.More importantly,this simulation procedure is achieved as an analytical solution to avoid the time-consuming sampling work.The results show that the proposed method can provide a reasonable estimation about the rockhead depth at various locations against measurement data and as a result,the subjectivity in determining prior mean can be minimized.Finally,both the measurement data and selection of hyper-parameters in the proposed method can affect the simulated rockhead profiles,while the influence of the latter is less significant than that of the former. 展开更多
关键词 Rockhead profile BOREHOLE conditional random field(crf) BAYESIAN Mean uncertainty
下载PDF
Conditional Random Field Tracking Model Based on a Visual Long Short Term Memory Network 被引量:3
13
作者 Pei-Xin Liu Zhao-Sheng Zhu +1 位作者 Xiao-Feng Ye Xiao-Feng Li 《Journal of Electronic Science and Technology》 CAS CSCD 2020年第4期308-319,共12页
In dense pedestrian tracking,frequent object occlusions and close distances between objects cause difficulty when accurately estimating object trajectories.In this study,a conditional random field tracking model is es... In dense pedestrian tracking,frequent object occlusions and close distances between objects cause difficulty when accurately estimating object trajectories.In this study,a conditional random field tracking model is established by using a visual long short term memory network in the three-dimensional(3D)space and the motion estimations jointly performed on object trajectory segments.Object visual field information is added to the long short term memory network to improve the accuracy of the motion related object pair selection and motion estimation.To address the uncertainty of the length and interval of trajectory segments,a multimode long short term memory network is proposed for the object motion estimation.The tracking performance is evaluated using the PETS2009 dataset.The experimental results show that the proposed method achieves better performance than the tracking methods based on the independent motion estimation. 展开更多
关键词 conditional random field(crf) long short term memory network(LSTM) motion estimation multiple object tracking(MOT)
下载PDF
Prediction of Potential Disease-Associated MicroRNAs Based on Hidden Conditional Random Field 被引量:1
14
作者 Maozu Guo Shuang Cheng +2 位作者 Chunyu Wang Xiaoyan Liu Yang Liu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2018年第1期57-66,共10页
MicroRNAs( miRNAs) are reported to be associated with various diseases. The identification of disease-related miRNAs would be beneficial to the disease diagnosis and prognosis. However,in contrast with the widely avai... MicroRNAs( miRNAs) are reported to be associated with various diseases. The identification of disease-related miRNAs would be beneficial to the disease diagnosis and prognosis. However,in contrast with the widely available expression profiling, the limited knowledge of molecular function restrict the development of previous methods based on network similarity measure. To construct reliable training data,the decision fusion method is used to prioritize the results of existing methods. After that,the performance of decision fusion method is validated. Furthermore,in consideration of the long range dependencies of successive expression values,Hidden Conditional Random Field model( HCRF) is selected and applied to miRNA expression profiling to infer disease-associated miRNAs. The results show that HCRF achieves superior performance and outperforms the previous methods. The results also demonstrate the power of using expression profiling for discovering disease-associated miRNAs. 展开更多
关键词 expression PROFILING hidden conditionAL random field miRNA-disease association network
下载PDF
Characterizing large-scale weak interlayer shear zones using conditional random field theory 被引量:1
15
作者 Gang Han Chuanqing Zhang +5 位作者 Hemant Kumar Singh Rongfei Liu Guan Chen Shuling Huang Hui Zhou Yuting Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第10期2611-2625,共15页
The shear behavior of large-scale weak intercalation shear zones(WISZs)often governs the stability of foundations,rock slopes,and underground structures.However,due to their wide distribution,undulating morphology,com... The shear behavior of large-scale weak intercalation shear zones(WISZs)often governs the stability of foundations,rock slopes,and underground structures.However,due to their wide distribution,undulating morphology,complex fabrics,and varying degrees of contact states,characterizing the shear behavior of natural and complex large-scale WISZs precisely is challenging.This study proposes an analytical method to address this issue,based on geological fieldwork and relevant experimental results.The analytical method utilizes the random field theory and Kriging interpolation technique to simplify the spatial uncertainties of the structural and fabric features for WISZs into the spatial correlation and variability of their mechanical parameters.The Kriging conditional random field of the friction angle of WISZs is embedded in the discrete element software 3DEC,enabling activation analysis of WISZ C2 in the underground caverns of the Baihetan hydropower station.The results indicate that the activation scope of WISZ C2 induced by the excavation of underground caverns is approximately 0.5e1 times the main powerhouse span,showing local activation.Furthermore,the overall safety factor of WISZ C2 follows a normal distribution with an average value of 3.697. 展开更多
关键词 Interlayer shear weakness zone Baihetan hydropower station conditional random field Kriging interpolation technique Activation analysis
下载PDF
Exploiting PLSA model and conditional random field for refining image annotation 被引量:1
16
作者 田东平 《High Technology Letters》 EI CAS 2015年第1期78-84,共7页
This paper presents a new method for refining image annotation by integrating probabilistic la- tent semantic analysis (PLSA) with conditional random field (CRF). First a PLSA model with asymmetric modalities is c... This paper presents a new method for refining image annotation by integrating probabilistic la- tent semantic analysis (PLSA) with conditional random field (CRF). First a PLSA model with asymmetric modalities is constructed to predict a candidate set of annotations with confidence scores, and then model semantic relationship among the candidate annotations by leveraging conditional ran- dom field. In CRF, the confidence scores generated lay the PLSA model and the Fliekr distance be- tween pairwise candidate annotations are considered as local evidences and contextual potentials re- spectively. The novelty of our method mainly lies in two aspects : exploiting PLSA to predict a candi- date set of annotations with confidence scores as well as CRF to further explore the semantic context among candidate annotations for precise image annotation. To demonstrate the effectiveness of the method proposed in this paper, an experiment is conducted on the standard Corel dataset and its re- sults are 'compared favorably with several state-of-the-art approaches. 展开更多
关键词 automatic image annotation probabilistie latent semantic analysis (PLSA) ex- pectation-maximization conditional random fieldcrf Fliekr distance image retrieval
下载PDF
An Image Segmentation Algorithm Based on a Local Region Conditional Random Field Model
17
作者 Xiao Jiang Haibin Yu Shuaishuai Lv 《International Journal of Communications, Network and System Sciences》 2020年第9期139-159,共21页
To reduce the computation cost of a combined probabilistic graphical model and a deep neural network in semantic segmentation, the local region condition random field (LRCRF) model is investigated which selectively ap... To reduce the computation cost of a combined probabilistic graphical model and a deep neural network in semantic segmentation, the local region condition random field (LRCRF) model is investigated which selectively applies the condition random field (CRF) to the most active region in the image. The full convolutional network structure is optimized with the ResNet-18 structure and dilated convolution to expand the receptive field. The tracking networks are also improved based on SiameseFC by considering the frame relations in consecutive-frame traffic scene maps. Moreover, the segmentation results of the greyscale input data sets are more stable and effective than using the RGB images for deep neural network feature extraction. The experimental results show that the proposed method takes advantage of the image features directly and achieves good real-time performance and high segmentation accuracy. 展开更多
关键词 Image Segmentation Local Region condition random field Model Deep Neural Network Consecutive Shooting Traffic Scene
下载PDF
基于条件随机场(CRFs)的中文词性标注方法 被引量:56
18
作者 洪铭材 张阔 +1 位作者 唐杰 李涓子 《计算机科学》 CSCD 北大核心 2006年第10期148-151,155,共5页
本文提出一种基于CRFs模型的中文词性标注方法。该方法利用CRFs模型能够添加任意特征的优点,在使用词的上下文信息的同时,针对兼类词和未登录词添加了新的统计特征。在《人民日报》1月份语料库上进行的封闭测试和开放测试中,该方法的标... 本文提出一种基于CRFs模型的中文词性标注方法。该方法利用CRFs模型能够添加任意特征的优点,在使用词的上下文信息的同时,针对兼类词和未登录词添加了新的统计特征。在《人民日报》1月份语料库上进行的封闭测试和开放测试中,该方法的标注准确率分别为98.56%和96.60%。 展开更多
关键词 词性标注 条件随机场 维特比解码
下载PDF
SparkCRF:一种基于Spark的并行CRFs算法实现 被引量:11
19
作者 朱继召 贾岩涛 +3 位作者 徐君 乔建忠 王元卓 程学旗 《计算机研究与发展》 EI CSCD 北大核心 2016年第8期1819-1828,共10页
条件随机场(condition random fields,CRFs)可用于解决各种文本分析问题,如自然语言处理(natural language processing,NLP)中的序列标记、中文分词、命名实体识别、实体间关系抽取等.传统的运行在单节点上的条件随机场在处理大规模文本... 条件随机场(condition random fields,CRFs)可用于解决各种文本分析问题,如自然语言处理(natural language processing,NLP)中的序列标记、中文分词、命名实体识别、实体间关系抽取等.传统的运行在单节点上的条件随机场在处理大规模文本时,面临一系列挑战.一方面,个人计算机遇到处理的瓶颈从而难以胜任;另一方面,服务器执行效率较低.而通过升级服务器的硬件配置来提高其计算能力的方法,在处理大规模的文本分析任务时,终究不能从根本上解决问题.为此,采用"分而治之"的思想,基于Apache Spark的大数据处理框架设计并实现了运行在集群环境下的分布式CRFs——SparkCRF.实验表明,SparkCRF在文本分析任务中,具有高效的计算能力和较好的扩展性,并且具有与传统的单节点CRF++相同水平的准确率. 展开更多
关键词 大数据 机器学习 分布式计算 SPARK 条件随机场
下载PDF
基于CRFs模型的敏感话题识别研究 被引量:4
20
作者 翟东海 聂洪玉 +1 位作者 崔静静 杜佳 《计算机应用研究》 CSCD 北大核心 2014年第4期993-996,共4页
条件随机场(CRFs)是一种判别式概率无向图学习模型,将其引入敏感话题识别中,提出了基于CRFs模型的敏感话题识别方法。将随机挑选出的一篇待检测文本s和剩余的待检测文本分别作为CRFs模型的观察序列和状态序列来计算文本s和其余待检测文... 条件随机场(CRFs)是一种判别式概率无向图学习模型,将其引入敏感话题识别中,提出了基于CRFs模型的敏感话题识别方法。将随机挑选出的一篇待检测文本s和剩余的待检测文本分别作为CRFs模型的观察序列和状态序列来计算文本s和其余待检测文本间的相关性概率值;然后将相关性最高的那篇文本和文本s合并表征一个类别;同时,将相关性最低的那篇文本作为另一个类别,将这两个类别作为CRFs模型新的状态序列,剩余的待检测文本作为新的观察序列进行迭代,据此实现敏感话题的识别。在数据集上进行的实验中,该方法的耗费函数的值为0.01943,宏平均F度量的值为0.8235,都取得了很好的效果。 展开更多
关键词 条件随机场 敏感话题识别 相关性概率值
下载PDF
上一页 1 2 56 下一页 到第
使用帮助 返回顶部