New classes of exact solutions of the quasi-linear diffusion-reaction equations are obtained by seeking for the high-order conditional Lie-Baeklund symmetries of the considered equations. The method used here extends ...New classes of exact solutions of the quasi-linear diffusion-reaction equations are obtained by seeking for the high-order conditional Lie-Baeklund symmetries of the considered equations. The method used here extends the approaches of derivative-dependent functional separation of variables and the invariant subspace. Behavior to some solutions such as blow-up and quenching is also described.展开更多
The present paper discusses a class of nonlinear diffusion-convection equations with source. The method that we use is the conditional symmetry method. It is shown that the equation admits certain conditional symmetri...The present paper discusses a class of nonlinear diffusion-convection equations with source. The method that we use is the conditional symmetry method. It is shown that the equation admits certain conditional symmetries for coefficient functions of the equations. As a consequence, solutions to the resulting equations are obtained.展开更多
We develop the generalized conditional symmetry (GCS) approach to solve the problem of dimensional reduction of Cauchy problems for the KdV-type equations. We characterize these equations that admit certain higheror...We develop the generalized conditional symmetry (GCS) approach to solve the problem of dimensional reduction of Cauchy problems for the KdV-type equations. We characterize these equations that admit certain higherorder GCSs and show the main reduction procedure by some examples. The obtained reductions cannot be derived within the framework of the standard Lie approach.展开更多
The concept of approximate generalized conditional symmetry (AGCS) for the perturbed evolution equations is introduced, and how to derive approximate conditional invariant solutions to the perturbed equations via th...The concept of approximate generalized conditional symmetry (AGCS) for the perturbed evolution equations is introduced, and how to derive approximate conditional invariant solutions to the perturbed equations via their A GCSs is illustrated with examples.展开更多
Lie symmetry reduction of some truly "variable coefficient" wave equations which are singled out from a class of (1 + 1)-dimensional variable coefficient nonlinear wave equations with respect to one and two-dimen...Lie symmetry reduction of some truly "variable coefficient" wave equations which are singled out from a class of (1 + 1)-dimensional variable coefficient nonlinear wave equations with respect to one and two-dimensional algebras is carried out. Some classes of exact solutions of the investigated equations are found by means of both the reductions and some modern techniques such as additional equivalent transformations and hidden symmetries and so on. Conditional symmetries are also discussed.展开更多
The algorithm for constructing conservation laws of Euler Lagvange type equations via Noether-type symmetry operators associated with partial Lagrangian has been presented. As applications, many new conservation laws ...The algorithm for constructing conservation laws of Euler Lagvange type equations via Noether-type symmetry operators associated with partial Lagrangian has been presented. As applications, many new conservation laws of some important systems of nonlinear partial differential equations have been obtained.展开更多
We study the space of stability conditions on K3 surfaces from the perspective of mirror symmetry. This is done in the attractor backgrounds(moduli). We find certain highly non-generic behaviors of marginal stability ...We study the space of stability conditions on K3 surfaces from the perspective of mirror symmetry. This is done in the attractor backgrounds(moduli). We find certain highly non-generic behaviors of marginal stability walls(a key notion in the study of wall crossings)in the space of stability conditions. These correspond via mirror symmetry to some nongeneric behaviors of special Lagrangians in an attractor background. The main results can be understood as a mirror correspondence in a synthesis of the homological mirror conjecture and SYZ mirror conjecture.展开更多
In this work we show that homogeneous Neumann boundary conditions inhibit the Coleman-Weinberg mechanism for spontaneous symmetry breaking in the scalar electrodynamics if the length of the finite region is small enou...In this work we show that homogeneous Neumann boundary conditions inhibit the Coleman-Weinberg mechanism for spontaneous symmetry breaking in the scalar electrodynamics if the length of the finite region is small enough (a = e2Mφ-1, where M, is the mass of the scalar field generated by the Coleman-Weinberg mechanism).展开更多
In this paper, we have completely classified the locally rotationally symmetric(LRS) Bianchi Type Ⅰ spacetimes via Noether symmetries(NS). The usual Lagrangian corresponding to LRS Bianchi Type Ⅰ metric is used to f...In this paper, we have completely classified the locally rotationally symmetric(LRS) Bianchi Type Ⅰ spacetimes via Noether symmetries(NS). The usual Lagrangian corresponding to LRS Bianchi Type Ⅰ metric is used to find the set of determining equations. To achieve a complete classification, these determining equations are generally integrated to find the components of NS vector field and the metric coefficients. During this procedure, several cases arise which give different Noether algebras of dimension 5,..., 9, 11, and 17. A comparison is established between the obtained NS and the Killing and homothetic vectors. Corresponding to all NS generators, the conservation laws are stated by using Noether's theorem. The metrics which we have obtained as a result of our classification are shown to be anisotropic or perfect fluids which satisfy certain energy conditions.展开更多
基金supported by the National Natural Science Foundation of China under Grant No. 10671156the Program for New Century Excellent Talents in Universities under Grant No. NCET-04-0968
文摘New classes of exact solutions of the quasi-linear diffusion-reaction equations are obtained by seeking for the high-order conditional Lie-Baeklund symmetries of the considered equations. The method used here extends the approaches of derivative-dependent functional separation of variables and the invariant subspace. Behavior to some solutions such as blow-up and quenching is also described.
基金The project supported by National Natural Science Foundation of China under Grant No. 10371098 and the Program for New Century Excellent Talents in Universities under Grant No. NCET-04-0968.
文摘The present paper discusses a class of nonlinear diffusion-convection equations with source. The method that we use is the conditional symmetry method. It is shown that the equation admits certain conditional symmetries for coefficient functions of the equations. As a consequence, solutions to the resulting equations are obtained.
基金supported by National Natural Science Foundation of China under Grant Nos.10447007 and 10671156the Natural Science Foundation of Shaanxi Province of China under Grant No.2005A13
文摘We develop the generalized conditional symmetry (GCS) approach to solve the problem of dimensional reduction of Cauchy problems for the KdV-type equations. We characterize these equations that admit certain higherorder GCSs and show the main reduction procedure by some examples. The obtained reductions cannot be derived within the framework of the standard Lie approach.
基金The project supported by National Natural Science Foundation of China under Grant No. 10447007, the China Postdoctoral Science Foundation, and the Natural Science Foundation of Shanxi Province under Grant No. 2005A13
文摘The concept of approximate generalized conditional symmetry (AGCS) for the perturbed evolution equations is introduced, and how to derive approximate conditional invariant solutions to the perturbed equations via their A GCSs is illustrated with examples.
基金Supported by the National Key Basic Research Project of China under Grant No.2010CB126600the National Natural Science Foundation of China under Grant No.60873070+2 种基金Shanghai Leading Academic Discipline Project No.B114the Postdoctoral Science Foundation of China under Grant No.20090450067Shanghai Postdoctoral Science Foundation under Grant No.09R21410600
文摘Lie symmetry reduction of some truly "variable coefficient" wave equations which are singled out from a class of (1 + 1)-dimensional variable coefficient nonlinear wave equations with respect to one and two-dimensional algebras is carried out. Some classes of exact solutions of the investigated equations are found by means of both the reductions and some modern techniques such as additional equivalent transformations and hidden symmetries and so on. Conditional symmetries are also discussed.
基金supported by the State Key Basic Research Program of China under Grant No.2004CB318000
文摘The algorithm for constructing conservation laws of Euler Lagvange type equations via Noether-type symmetry operators associated with partial Lagrangian has been presented. As applications, many new conservation laws of some important systems of nonlinear partial differential equations have been obtained.
文摘We study the space of stability conditions on K3 surfaces from the perspective of mirror symmetry. This is done in the attractor backgrounds(moduli). We find certain highly non-generic behaviors of marginal stability walls(a key notion in the study of wall crossings)in the space of stability conditions. These correspond via mirror symmetry to some nongeneric behaviors of special Lagrangians in an attractor background. The main results can be understood as a mirror correspondence in a synthesis of the homological mirror conjecture and SYZ mirror conjecture.
文摘In this work we show that homogeneous Neumann boundary conditions inhibit the Coleman-Weinberg mechanism for spontaneous symmetry breaking in the scalar electrodynamics if the length of the finite region is small enough (a = e2Mφ-1, where M, is the mass of the scalar field generated by the Coleman-Weinberg mechanism).
基金Supported by the Higher Education Commission of Pakistan for Granting Indigenous Ph.D Fellowship
文摘In this paper, we have completely classified the locally rotationally symmetric(LRS) Bianchi Type Ⅰ spacetimes via Noether symmetries(NS). The usual Lagrangian corresponding to LRS Bianchi Type Ⅰ metric is used to find the set of determining equations. To achieve a complete classification, these determining equations are generally integrated to find the components of NS vector field and the metric coefficients. During this procedure, several cases arise which give different Noether algebras of dimension 5,..., 9, 11, and 17. A comparison is established between the obtained NS and the Killing and homothetic vectors. Corresponding to all NS generators, the conservation laws are stated by using Noether's theorem. The metrics which we have obtained as a result of our classification are shown to be anisotropic or perfect fluids which satisfy certain energy conditions.