期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Recent progress in random metric theory and its applications to conditional risk measures 被引量:18
1
作者 GUO TieXin 《Science China Mathematics》 SCIE 2011年第4期633-660,共28页
The purpose of this paper is to give a selective survey on recent progress in random metric theory and its applications to conditional risk measures.This paper includes eight sections.Section 1 is a longer introductio... The purpose of this paper is to give a selective survey on recent progress in random metric theory and its applications to conditional risk measures.This paper includes eight sections.Section 1 is a longer introduction,which gives a brief introduction to random metric theory,risk measures and conditional risk measures.Section 2 gives the central framework in random metric theory,topological structures,important examples,the notions of a random conjugate space and the Hahn-Banach theorems for random linear functionals.Section 3 gives several important representation theorems for random conjugate spaces.Section 4 gives characterizations for a complete random normed module to be random reflexive.Section 5 gives hyperplane separation theorems currently available in random locally convex modules.Section 6 gives the theory of random duality with respect to the locally L0-convex topology and in particular a characterization for a locally L0-convex module to be L0-pre-barreled.Section 7 gives some basic results on L0-convex analysis together with some applications to conditional risk measures.Finally,Section 8 is devoted to extensions of conditional convex risk measures,which shows that every representable L∞-type of conditional convex risk measure and every continuous Lp-type of convex conditional risk measure(1 ≤ p < +∞) can be extended to an L∞F(E)-type of σ,λ(L∞F(E),L1F(E))-lower semicontinuous conditional convex risk measure and an LpF(E)-type of T,λ-continuous conditional convex risk measure(1 ≤ p < +∞),respectively. 展开更多
关键词 random normed module random inner product module random locally convex module random conjugate space L0-convex analysis conditional risk measures
原文传递
Conditional coherent risk measures and regime-switching conic pricing
2
作者 Engel John C Dela Vega Robert J Elliott 《Probability, Uncertainty and Quantitative Risk》 2021年第4期267-300,共34页
This paper introduces and represents conditional coherent risk measures as essential suprema of conditional expectations over a convex set of probability measures and as distorted expectations given a concave distorti... This paper introduces and represents conditional coherent risk measures as essential suprema of conditional expectations over a convex set of probability measures and as distorted expectations given a concave distortion function.A model is then developed for the bid and ask prices of a European-type asset by a conic formulation.The price process is governed by a modified geometric Brownian motion whose drift and diffusion coefficients depend on a Markov chain.The bid and ask prices of a European-type asset are then characterized using conic quantization. 展开更多
关键词 conditional coherent risk measures Markov chains REGIME-SWITCHING Conic finance European options Distortion functions Conic quantization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部