On the basis of local measurements of hydraulic conductivity, geostatistical methods have been found to be useful in heterogeneity characterization of a hydraulic conductivity field on a regional scale. However, the m...On the basis of local measurements of hydraulic conductivity, geostatistical methods have been found to be useful in heterogeneity characterization of a hydraulic conductivity field on a regional scale. However, the methods are not suited to directly integrate dynamic production data, such as, hydraulic head and solute concentration, into the study of conductivity distribution. These data, which record the flow and transport processes in the medium, are closely related to the spatial distribution of hydraulic conductivity. In this study, a three-dimensional gradient-based inverse method--the sequential self-calibration (SSC) method--is developed to calibrate a hydraulic conductivity field, initially generated by a geostatistical simulation method, conditioned on tracer test results. The SSC method can honor both local hydraulic conductivity measurements and tracer test data. The mismatch between the simulated hydraulic conductivity field and the reference true one, measured by its mean square error (MSE), is reduced through the SSC conditional study. In comparison with the unconditional results, the SSC conditional study creates the mean breakthrough curve much closer to the reference true curve, and significantly reduces the prediction uncertainty of the solute transport in the observed locations. Further, the reduction of uncertainty is spatially dependent, which indicates that good locations, geological structure, and boundary conditions will affect the efficiency of the SSC study results.展开更多
On October 14, two satellites SJ-9A/B were sent into their preset orbits by a LM-2C/SMA launch vehicle, which is the first flight of a series of China's civilian technology experimental satellites. SJ-9A and B are...On October 14, two satellites SJ-9A/B were sent into their preset orbits by a LM-2C/SMA launch vehicle, which is the first flight of a series of China's civilian technology experimental satellites. SJ-9A and B are the first two satellites in the series of civilian technology experimental satellites designed for tests such as long lifetime and high reliability, high precision and high performance of satellite, domestically developed core components, satellite formation展开更多
The WGQ type micro computer based electromagnetic nondestructive testing instrument for quality of metal material was developed on the principle of electromagnetic induction. The invention and marketing of the WGQ ins...The WGQ type micro computer based electromagnetic nondestructive testing instrument for quality of metal material was developed on the principle of electromagnetic induction. The invention and marketing of the WGQ instrument has solved the world wide tough problem of the "N" shape relation between the indicated values of testing instruments and the hardness of most metal parts, particularly steel and iron parts. It has also greatly improved the hardness testing precision of aluminium alloy. Consequently the instrument can accurately perform either the quantitative testing of aluminium alloy, steel and iron parts hardness or the qualitative testing of their internal and external defects such as cracks, over burnt and so on. Its hardness testing precision is HRB±0.7, HRC±1 and HB±10. The testing speed can reach 1 500 parts per hour. The instrument has already been successfully applied to the spot of lots of factories.展开更多
In order to explore the thermal conductivity of the natural poly-mineral rock,numerical tests of rock models with randomly-distributed components were conducted and compared with each other.Elaborately designed Monte ...In order to explore the thermal conductivity of the natural poly-mineral rock,numerical tests of rock models with randomly-distributed components were conducted and compared with each other.Elaborately designed Monte Carlo method was adopted to ingratiate the requirement of the random characteristics of grain size and the grains'spatial distribution.This requirement was fulfilled by clustering the randomly generated unstructured tetrahedral elements in full three dimensions.Natural rocks are consisted of randomly distributed crystal particles or intergranular minerals.Our primary results verify that the thermal conductivity of the rock is strongly sensitive to the ingredients' volume fraction and their spatial distribution.Furthermore,we proved that,in order to reduce the measurement error to a reasonable range,the numerical specimen must be large enough or include sufficient number of mineral particles.Our numerical test results are in accordance with a variety of empirical formulas which are currently employed in petrology.展开更多
This paper proposes an effective method for early diagnosis (stress concentrating) of the oil-gas pipeline. Based on the principle of electromagnetic induction Faraday, we have designed and realized the nondestructive...This paper proposes an effective method for early diagnosis (stress concentrating) of the oil-gas pipeline. Based on the principle of electromagnetic induction Faraday, we have designed and realized the nondestructive testing system for stress concentration area of ferromagnetic materials by means of the research of metal materials inverse magnetostrictive effect mechanism. The system changes the influence degree of the stress in ferromagnetic materials’ magnetic conductance to the corresponding voltage array by using discrete wavelet analysis method to process the data, in which not only the measuring accuracy is improved, but also the stress concentration is more directly reflected. The experiments confirm that the electromagnetic stress testing method is feasible and valid.展开更多
Hydraulic conductivity is the ability of a porous media to transfer water through its pore matrix. That is a key parameter for the design and analysis of soil fluid associated structures and issues. This paper present...Hydraulic conductivity is the ability of a porous media to transfer water through its pore matrix. That is a key parameter for the design and analysis of soil fluid associated structures and issues. This paper presents the test results of the vertical hydraulic conductivity k<sub>v</sub><sub> </sub>carried out on one poorly graded sand and three gap graded gravely sand. It was found that the vertical hydraulic conductivity of saturated soil depends on the grain size distribution curve, on the initial relative density of the soil. Compilation of these current test results and other test results published, shows that the common approaches predict well to some extent the vertical hydraulic conductivity k<sub>v</sub> for the poorly graded sand materials and underestimate the k<sub>v</sub> values for gap graded gravely sand materials. Therefore, new approaches are developed for the prediction of the vertical hydraulic conductivity in saturated poorly graded sand and gap graded gravely sand. The derived results from the new approaches lie in the range of the recommended values by (EAU 2012) and (NAVFAC DM 7 1974).展开更多
With the completion of South-North Water Transfer Project in China, plenty of high quality water will be transported to Beijing. To restore the groundwater level in Beijing, part of transferred water is planned to be ...With the completion of South-North Water Transfer Project in China, plenty of high quality water will be transported to Beijing. To restore the groundwater level in Beijing, part of transferred water is planned to be used for artificial recharge. Clogging is an unavoidable challenge in the artificial recharge process. Therefore, a test is designed to analyse clogging duration and scope of influence and to test the reinjection properties of different recharge media. The test employs the self-designed sand column system with variable spacing and section monitoring, composed of four parts: Sand column, water-supply system, pressure-test system and flow-test system, to simulate the clogging of artificial recharge of sand and gravel pits. The hydraulic conductivity levels of all sand column sections are obtained to analyse the clogging of the injection of different concentrations in media of different particle sizes. In this experiment, two kinds of media are used–round gravel from sand and gravel pit in Xihuang village and the sand from sand and gravel pit by the Yongding River. The concentrations of recharge fluid are respectively 0.5 g/L and 1 g/L. The results show that clogging usually lasts for 20 hrs., and the hydraulic conductivity drops to the original 10%. Clogging usually occurs at 0–12 cm section of the sand column. The scope of influence is 0–60 cm. In column 3 and 4, whose average particle sizes are larger, section 20–50 cm also suffers from clogging, apart from section 0–12 cm. The effective recharge times are respectively 33 hrs. in column 1, 14 hrs. in column 2, 12 hrs. in column 3 and 12 hrs. in column 4. The larger the average particle size is, the quicker the clogging occurs. In media of larger particles, the change in suspension concentration does not have significant influence on the development of clogging. In conclusion, it is suggested that during artificial recharge, the conditions of reinjection medium should be fully considered and effective method of recharge be employed in order to improve effective recharge time.展开更多
Aquifers derived from the crystalline basement rocks for parts of Sanga Local Government area of Kaduna State, Nigeria consist of clay, silt, sand, gravel and laterite materials which may be in various proportions. Us...Aquifers derived from the crystalline basement rocks for parts of Sanga Local Government area of Kaduna State, Nigeria consist of clay, silt, sand, gravel and laterite materials which may be in various proportions. Using Cooper-Jacobs non-equilibrium graphical method, the hydraulic properties were estimated from pumping test data of 18 boreholes. Conductivity varies from 1.02 × 10<sup>﹣2</sup> m/s to 4.07 × 10<sup>﹣2</sup> m/s and transmissivity varies from 1.14 × 10<sup>﹣1</sup> m<sup>2</sup>/s to 4.40 × 10<sup>﹣1</sup> m<sup>2</sup>/s. The values of specific capacity range between 1.03 × 10<sup>﹣1</sup> m<sup>2</sup>/s/m and 9.00 × 10<sup>﹣2</sup> m<sup>2</sup>/s/m, and these values indicate that the aquifers in the area have low to moderate ground water potentials. The low yield range of between 0.45 l/s and 1.00 l/s recorded in the area shows the heterogeneous and anisotropy nature of the basement aquifer system in terms of groundwater discharge. On the average, the boreholes assessed have potentials to sustain local to regional supply provided the best drilling method and materials are used and well completion properly done.展开更多
BACKGROUND Acute recurrent pancreatitis(ARP)is characterized by episodes of acute pancreatitis in an otherwise normal gland.When no cause of ARP is identifiable,the diagnosis of"idiopathic"ARP is given.Mutat...BACKGROUND Acute recurrent pancreatitis(ARP)is characterized by episodes of acute pancreatitis in an otherwise normal gland.When no cause of ARP is identifiable,the diagnosis of"idiopathic"ARP is given.Mutations in the cystic fibrosis transmembrane conductance regulator(CFTR)gene increase the risk of ARP by 3-to 4-times compared to the general population,while cystic fibrosis(CF)patients present with a 40-to 80-times higher risk of developing pancreatitis.CASE SUMMARY In non-classical CF or CFTR-related disorders,CFTR functional tests can help to ensure a proper diagnosis.We applied an individualized combination of standardized and new CFTR functional bioassays for a patient referred to the Verona CF Center for evaluation after several episodes of acute pancreatitis.The CFTR genotype was G542X+/-with IVS8Tn:T7/9 polymorphism.The sweat(Cl-)values were borderline.Intestinal current measurements were performed according to the European Cystic Fibrosis Society Standardized Operating Procedure.Recent nasal surgery for deviated septum did not allow for nasal potential difference measurements.Lung function and sputum cultures were normal;azoospermia was excluded.Pancreas divisum was excluded by imaging but hypoplasia of the left hepatic lobe was detected.Innovative tests applied in this case include sweat rate measurement by image analysis,CFTR function in monocytes evaluated using a membrane potential-sensitive fluorescent probe,and the intestinal organoids forskolin-induced swelling assay.CONCLUSION Combination of innovative CFTR functional assays might support a controversial diagnosis when CFTR-related disorders and/or non-classical CF are suspected.展开更多
基金This study is partially supported by the Program of Outstanding Overseas Youth Chinese Scholar,the National Natural Science Foundation of China (No. 40528003)partially supported by USA National Science Foundation.
文摘On the basis of local measurements of hydraulic conductivity, geostatistical methods have been found to be useful in heterogeneity characterization of a hydraulic conductivity field on a regional scale. However, the methods are not suited to directly integrate dynamic production data, such as, hydraulic head and solute concentration, into the study of conductivity distribution. These data, which record the flow and transport processes in the medium, are closely related to the spatial distribution of hydraulic conductivity. In this study, a three-dimensional gradient-based inverse method--the sequential self-calibration (SSC) method--is developed to calibrate a hydraulic conductivity field, initially generated by a geostatistical simulation method, conditioned on tracer test results. The SSC method can honor both local hydraulic conductivity measurements and tracer test data. The mismatch between the simulated hydraulic conductivity field and the reference true one, measured by its mean square error (MSE), is reduced through the SSC conditional study. In comparison with the unconditional results, the SSC conditional study creates the mean breakthrough curve much closer to the reference true curve, and significantly reduces the prediction uncertainty of the solute transport in the observed locations. Further, the reduction of uncertainty is spatially dependent, which indicates that good locations, geological structure, and boundary conditions will affect the efficiency of the SSC study results.
文摘On October 14, two satellites SJ-9A/B were sent into their preset orbits by a LM-2C/SMA launch vehicle, which is the first flight of a series of China's civilian technology experimental satellites. SJ-9A and B are the first two satellites in the series of civilian technology experimental satellites designed for tests such as long lifetime and high reliability, high precision and high performance of satellite, domestically developed core components, satellite formation
文摘The WGQ type micro computer based electromagnetic nondestructive testing instrument for quality of metal material was developed on the principle of electromagnetic induction. The invention and marketing of the WGQ instrument has solved the world wide tough problem of the "N" shape relation between the indicated values of testing instruments and the hardness of most metal parts, particularly steel and iron parts. It has also greatly improved the hardness testing precision of aluminium alloy. Consequently the instrument can accurately perform either the quantitative testing of aluminium alloy, steel and iron parts hardness or the qualitative testing of their internal and external defects such as cracks, over burnt and so on. Its hardness testing precision is HRB±0.7, HRC±1 and HB±10. The testing speed can reach 1 500 parts per hour. The instrument has already been successfully applied to the spot of lots of factories.
基金supported by the National Science and Technology Project (No. Si-noProbe-07)National Basic Research Program of China (No. 2008cb425701)+1 种基金National Natural Science Foundation of China (No. 40774049)Institute of Earthquake Science,China Earthquake Administration,who provided us with the support from the collaborative project named as "Pre-study of several issues of testing ground for numerical forecast earthquakes in North China"
文摘In order to explore the thermal conductivity of the natural poly-mineral rock,numerical tests of rock models with randomly-distributed components were conducted and compared with each other.Elaborately designed Monte Carlo method was adopted to ingratiate the requirement of the random characteristics of grain size and the grains'spatial distribution.This requirement was fulfilled by clustering the randomly generated unstructured tetrahedral elements in full three dimensions.Natural rocks are consisted of randomly distributed crystal particles or intergranular minerals.Our primary results verify that the thermal conductivity of the rock is strongly sensitive to the ingredients' volume fraction and their spatial distribution.Furthermore,we proved that,in order to reduce the measurement error to a reasonable range,the numerical specimen must be large enough or include sufficient number of mineral particles.Our numerical test results are in accordance with a variety of empirical formulas which are currently employed in petrology.
文摘This paper proposes an effective method for early diagnosis (stress concentrating) of the oil-gas pipeline. Based on the principle of electromagnetic induction Faraday, we have designed and realized the nondestructive testing system for stress concentration area of ferromagnetic materials by means of the research of metal materials inverse magnetostrictive effect mechanism. The system changes the influence degree of the stress in ferromagnetic materials’ magnetic conductance to the corresponding voltage array by using discrete wavelet analysis method to process the data, in which not only the measuring accuracy is improved, but also the stress concentration is more directly reflected. The experiments confirm that the electromagnetic stress testing method is feasible and valid.
文摘Hydraulic conductivity is the ability of a porous media to transfer water through its pore matrix. That is a key parameter for the design and analysis of soil fluid associated structures and issues. This paper presents the test results of the vertical hydraulic conductivity k<sub>v</sub><sub> </sub>carried out on one poorly graded sand and three gap graded gravely sand. It was found that the vertical hydraulic conductivity of saturated soil depends on the grain size distribution curve, on the initial relative density of the soil. Compilation of these current test results and other test results published, shows that the common approaches predict well to some extent the vertical hydraulic conductivity k<sub>v</sub> for the poorly graded sand materials and underestimate the k<sub>v</sub> values for gap graded gravely sand materials. Therefore, new approaches are developed for the prediction of the vertical hydraulic conductivity in saturated poorly graded sand and gap graded gravely sand. The derived results from the new approaches lie in the range of the recommended values by (EAU 2012) and (NAVFAC DM 7 1974).
基金supported by public welfare geological investigation and scientific project of Beijing (2010): The key technology on clogging features analysis of groundwater artificial recharge
文摘With the completion of South-North Water Transfer Project in China, plenty of high quality water will be transported to Beijing. To restore the groundwater level in Beijing, part of transferred water is planned to be used for artificial recharge. Clogging is an unavoidable challenge in the artificial recharge process. Therefore, a test is designed to analyse clogging duration and scope of influence and to test the reinjection properties of different recharge media. The test employs the self-designed sand column system with variable spacing and section monitoring, composed of four parts: Sand column, water-supply system, pressure-test system and flow-test system, to simulate the clogging of artificial recharge of sand and gravel pits. The hydraulic conductivity levels of all sand column sections are obtained to analyse the clogging of the injection of different concentrations in media of different particle sizes. In this experiment, two kinds of media are used–round gravel from sand and gravel pit in Xihuang village and the sand from sand and gravel pit by the Yongding River. The concentrations of recharge fluid are respectively 0.5 g/L and 1 g/L. The results show that clogging usually lasts for 20 hrs., and the hydraulic conductivity drops to the original 10%. Clogging usually occurs at 0–12 cm section of the sand column. The scope of influence is 0–60 cm. In column 3 and 4, whose average particle sizes are larger, section 20–50 cm also suffers from clogging, apart from section 0–12 cm. The effective recharge times are respectively 33 hrs. in column 1, 14 hrs. in column 2, 12 hrs. in column 3 and 12 hrs. in column 4. The larger the average particle size is, the quicker the clogging occurs. In media of larger particles, the change in suspension concentration does not have significant influence on the development of clogging. In conclusion, it is suggested that during artificial recharge, the conditions of reinjection medium should be fully considered and effective method of recharge be employed in order to improve effective recharge time.
文摘Aquifers derived from the crystalline basement rocks for parts of Sanga Local Government area of Kaduna State, Nigeria consist of clay, silt, sand, gravel and laterite materials which may be in various proportions. Using Cooper-Jacobs non-equilibrium graphical method, the hydraulic properties were estimated from pumping test data of 18 boreholes. Conductivity varies from 1.02 × 10<sup>﹣2</sup> m/s to 4.07 × 10<sup>﹣2</sup> m/s and transmissivity varies from 1.14 × 10<sup>﹣1</sup> m<sup>2</sup>/s to 4.40 × 10<sup>﹣1</sup> m<sup>2</sup>/s. The values of specific capacity range between 1.03 × 10<sup>﹣1</sup> m<sup>2</sup>/s/m and 9.00 × 10<sup>﹣2</sup> m<sup>2</sup>/s/m, and these values indicate that the aquifers in the area have low to moderate ground water potentials. The low yield range of between 0.45 l/s and 1.00 l/s recorded in the area shows the heterogeneous and anisotropy nature of the basement aquifer system in terms of groundwater discharge. On the average, the boreholes assessed have potentials to sustain local to regional supply provided the best drilling method and materials are used and well completion properly done.
基金Supported by Italian CF Research Foundation with the contributions of Delegazione FFC di Palermo e di Vittoria Ragusa Catania 2,No.FFC grants No.4/2013Delegazione FFC di Treviso Montebelluna La Bottega delle Donne,No.3/2014+3 种基金Delegazione FFC di Belluno,No.7/2016Delegazione FFC di Taranto Massafra,Cosenza sud,della Valpolicella,Guadagnin SRL,No.6/2018Delegazione FFC di Tradate Gallarate,No.13/2018CFFT-USA and Lega Italiana Fibrosi Cistica-Associazione Veneta ONLUS
文摘BACKGROUND Acute recurrent pancreatitis(ARP)is characterized by episodes of acute pancreatitis in an otherwise normal gland.When no cause of ARP is identifiable,the diagnosis of"idiopathic"ARP is given.Mutations in the cystic fibrosis transmembrane conductance regulator(CFTR)gene increase the risk of ARP by 3-to 4-times compared to the general population,while cystic fibrosis(CF)patients present with a 40-to 80-times higher risk of developing pancreatitis.CASE SUMMARY In non-classical CF or CFTR-related disorders,CFTR functional tests can help to ensure a proper diagnosis.We applied an individualized combination of standardized and new CFTR functional bioassays for a patient referred to the Verona CF Center for evaluation after several episodes of acute pancreatitis.The CFTR genotype was G542X+/-with IVS8Tn:T7/9 polymorphism.The sweat(Cl-)values were borderline.Intestinal current measurements were performed according to the European Cystic Fibrosis Society Standardized Operating Procedure.Recent nasal surgery for deviated septum did not allow for nasal potential difference measurements.Lung function and sputum cultures were normal;azoospermia was excluded.Pancreas divisum was excluded by imaging but hypoplasia of the left hepatic lobe was detected.Innovative tests applied in this case include sweat rate measurement by image analysis,CFTR function in monocytes evaluated using a membrane potential-sensitive fluorescent probe,and the intestinal organoids forskolin-induced swelling assay.CONCLUSION Combination of innovative CFTR functional assays might support a controversial diagnosis when CFTR-related disorders and/or non-classical CF are suspected.