Highly ordered and uniformly porous structure of conductive foams is a vital issue for various functional purposes such as piezoresistive sensing and electromagnetic interference(EMI) shielding. With the aids of Kevla...Highly ordered and uniformly porous structure of conductive foams is a vital issue for various functional purposes such as piezoresistive sensing and electromagnetic interference(EMI) shielding. With the aids of Kevlar polyanionic chains, thermoplastic polyurethane(TPU) foams reinforced by aramid nanofibers(ANF) with adjustable pore-size distribution were successfully obtained via a nonsolvent-induced phase separation. In this regard, the most outstanding result is the in situ formation of ANF in TPU foams after protonation of Kevlar polyanion during the NIPS process. Furthermore, in situ growth of copper nanoparticles(Cu NPs) on TPU/ANF foams was performed according to the electroless deposition by using the tiny amount of pre-blended Ti_(3)C_(2)T_(x) MXene as reducing agents. Particularly, the existence of Cu NPs layers significantly promoted the storage modulus in 2,932% increments, and the well-designed TPU/ANF/Ti_(3)C_(2)T_(x) MXene(PAM-Cu) composite foams showed distinguished compressive cycle stability. Taking virtues of the highly ordered and elastic porous architectures, the PAM-Cu foams were utilized as piezoresistive sensor exhibiting board compressive interval of 0–344.5 kPa(50% strain) with good sensitivity at 0.46 kPa^(-1). Meanwhile,the PAM-Cu foams displayed remarkable EMI shielding effectiveness at 79.09 dB in X band. This work provides an ideal strategy to fabricate highly ordered TPU foams with outstanding elastic recovery and excellent EMI shielding performance, which can be used as a promising candidate in integration of satisfactory piezoresistive sensor and EMI shielding applications for human–machine interfaces.展开更多
This paper is concerned with the thermoelastic behaviors of an elastic medium with variable thermal material properties. The problem is in the context of fractional order heat conduction. The governing equations with ...This paper is concerned with the thermoelastic behaviors of an elastic medium with variable thermal material properties. The problem is in the context of fractional order heat conduction. The governing equations with variable thermal properties were established by means of the fractional order calculus. The problem of a half-space formed of an elastic medium with variable thermal material properties was solved, and asymptotic solutions induced by a sudden temperature rise on the boundary were obtained by applying an asymptotic approach. The propagations of thermoelastic wave and thermal wave, as well as the distributions of displacement, temperature and stresses were obtained and plotted. Variations in the distributions with different values of fractional order parameter were discussed. The results were compared with those obtained from the case of constant material properties to evaluate the effects of variable material properties on thermoelastic behaviors.展开更多
基金financially sponsored by the Science and Technology Commission of Shanghai Municipality (20230742300 and 18595800700)Key Laboratory of Resource Chemistry, Ministry of Education (KLRC_ME2103)the project of “joint assignment” in Shanghai University led by Prof. Tongyue Gao from School of Mechatronic Engineering and Automation。
文摘Highly ordered and uniformly porous structure of conductive foams is a vital issue for various functional purposes such as piezoresistive sensing and electromagnetic interference(EMI) shielding. With the aids of Kevlar polyanionic chains, thermoplastic polyurethane(TPU) foams reinforced by aramid nanofibers(ANF) with adjustable pore-size distribution were successfully obtained via a nonsolvent-induced phase separation. In this regard, the most outstanding result is the in situ formation of ANF in TPU foams after protonation of Kevlar polyanion during the NIPS process. Furthermore, in situ growth of copper nanoparticles(Cu NPs) on TPU/ANF foams was performed according to the electroless deposition by using the tiny amount of pre-blended Ti_(3)C_(2)T_(x) MXene as reducing agents. Particularly, the existence of Cu NPs layers significantly promoted the storage modulus in 2,932% increments, and the well-designed TPU/ANF/Ti_(3)C_(2)T_(x) MXene(PAM-Cu) composite foams showed distinguished compressive cycle stability. Taking virtues of the highly ordered and elastic porous architectures, the PAM-Cu foams were utilized as piezoresistive sensor exhibiting board compressive interval of 0–344.5 kPa(50% strain) with good sensitivity at 0.46 kPa^(-1). Meanwhile,the PAM-Cu foams displayed remarkable EMI shielding effectiveness at 79.09 dB in X band. This work provides an ideal strategy to fabricate highly ordered TPU foams with outstanding elastic recovery and excellent EMI shielding performance, which can be used as a promising candidate in integration of satisfactory piezoresistive sensor and EMI shielding applications for human–machine interfaces.
基金Project supported by the National Natural Science Foundation of China(Nos.51206062 and 11102073)the Six Talent Peaks Project of Jiangsu Province(No.2014-ZBZZ-016)+1 种基金the China Postdoctoral Science Foundation(No.2013M540420)the Jiangsu Planned Projects for Postdoctoral Research Funds(No.1501126B)
文摘This paper is concerned with the thermoelastic behaviors of an elastic medium with variable thermal material properties. The problem is in the context of fractional order heat conduction. The governing equations with variable thermal properties were established by means of the fractional order calculus. The problem of a half-space formed of an elastic medium with variable thermal material properties was solved, and asymptotic solutions induced by a sudden temperature rise on the boundary were obtained by applying an asymptotic approach. The propagations of thermoelastic wave and thermal wave, as well as the distributions of displacement, temperature and stresses were obtained and plotted. Variations in the distributions with different values of fractional order parameter were discussed. The results were compared with those obtained from the case of constant material properties to evaluate the effects of variable material properties on thermoelastic behaviors.