期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Heat Transfer Analysis of MHD Power Law Nano Fluid Flow through Annular Sector Duct
1
作者 AHMED Farhan IQBAL Mazhar 《Journal of Thermal Science》 SCIE EI CAS CSCD 2020年第1期169-181,共13页
Flow and heat transfer analysis of an electrically conducting MHD power law nano fluid is carried out through annular sector duct,under the influence of constant pressure gradient.Two types of nano particles(i.e.Cu an... Flow and heat transfer analysis of an electrically conducting MHD power law nano fluid is carried out through annular sector duct,under the influence of constant pressure gradient.Two types of nano particles(i.e.Cu and TiO2)are used in power law nano fluid.Strongly implicit procedure,(SIP)is used to simulate the discretized coupled algebraic equations.It has been observed that volume fraction of nano particles,ϕand magnetic field parameter,Ha are favourable for the heat transfer rate,however,both resist the fluid flow.Impact of applied uniform transverse magnetic field exceeds in the case of shear thickening fluids(i.e.n>1)by increasing the value of Ha as compared to that in shear thinning fluids(i.e.n<1).Therefore,enhancement in heat transfer rate is comparably more in shear thickening fluid.Furthermore,comparable limiting case study with published result is also carried out in this research paper. 展开更多
关键词 electrically conducting power law nano fluid Cu nano particles TiO2 nano particles shear thickening fluid shear thinning fluid heat transfer rate friction factor
原文传递
Fast valve power loss evaluation method for modular multi-level converter operating at high-frequency 被引量:5
2
作者 Fen Tao Zhujun Xie +3 位作者 Jie Cheng Chenghao Li Lu Zhao Jinyu Wen 《Protection and Control of Modern Power Systems》 2016年第1期26-36,共11页
There is no common accepted way for calculating the valve power loss of modular multilevel converter(MMC).Valve power loss estimation based on analytical calculation is inaccurate to address the switching power loss a... There is no common accepted way for calculating the valve power loss of modular multilevel converter(MMC).Valve power loss estimation based on analytical calculation is inaccurate to address the switching power loss and valve power loss estimation based on detailed electro-magnetic simulation is of low speed.To solve this problem,a method of valve power loss estimation based on the detailed equivalent simulation model of MMC is proposed.Results of valve power loss analysis of 201-level 500MW MMC operating at 50Hz~1000Hz are presented.It is seen that the valve power loss of a MMC increased by 12,40 and 93%under 200Hz,500Hz and 1000Hz operating frequency.The article concludes that in a device with isolated inner AC system,MMC operating at higher frequency will be more competitive than typical 50Hz/60Hz MMC with moderate increase of operating power loss and significant reduction of the size of the AC components. 展开更多
关键词 Modular multilevel converter(MMC) Medium-high frequency Valve power loss Conduction power loss Switching power loss
原文传递
Finite Element Method Formulation in Polar Coordinates for Transient Heat Conduction Problems 被引量:1
3
作者 Piotr Duda 《Journal of Thermal Science》 SCIE EI CAS CSCD 2016年第2期188-194,共7页
The aim of this paper is the formulation of the finite element method in polar coordinates to solve transient heat conduction problems. It is hard to find in the literature a formulation of the finite element method(F... The aim of this paper is the formulation of the finite element method in polar coordinates to solve transient heat conduction problems. It is hard to find in the literature a formulation of the finite element method(FEM) in polar or cylindrical coordinates for the solution of heat transfer problems. This document shows how to apply the most often used boundary conditions. The global equation system is solved by the Crank-Nicolson method. The proposed algorithm is verified in three numerical tests. In the first example, the obtained transient temperature distribution is compared with the temperature obtained from the presented analytical solution. In the second numerical example, the variable boundary condition is assumed. In the last numerical example the component with the shape different than cylindrical is used. All examples show that the introduction of the polar coordinate system gives better results than in the Cartesian coordinate system. The finite element method formulation in polar coordinates is valuable since it provides a higher accuracy of the calculations without compacting the mesh in cylindrical or similar to tubular components. The proposed method can be applied for circular elements such as boiler drums, outlet headers, flux tubes. This algorithm can be useful during the solution of inverse problems, which do not allow for high density grid. This method can calculate the temperature distribution in the bodies of different properties in the circumferential and the radial direction. The presented algorithm can be developed for other coordinate systems. The examples demonstrate a good accuracy and stability of the proposed method. 展开更多
关键词 FEM polar coordinate system numerical methods transient heat conduction power boilers
原文传递
Thermoelectric properties of Yb x Co_4 Sb_(12) system
4
作者 刘洪权 赵新兵 +1 位作者 朱铁军 谷亦杰 《Journal of Rare Earths》 SCIE EI CAS CSCD 2012年第5期456-459,共4页
Yb x Co 4 Sb 12 polycrystals were fabricated by vacuum melting combined with hot-press sintering.The effect of Yb-filling on thermoelectric property of unfilled skutterudite CoSb 3 was investigated,which indicated the... Yb x Co 4 Sb 12 polycrystals were fabricated by vacuum melting combined with hot-press sintering.The effect of Yb-filling on thermoelectric property of unfilled skutterudite CoSb 3 was investigated,which indicated the enhancement of the power factor of the material.Transport properties of materials changed from semi-conductor to semi-metal during the measurement of electrical conductivity,which indicated the change of electronic band structure.The maximum value of electrical conductivity was about 190000 S/m at 300 K for all samples.On the basis of Yb-filling,power factor of Yb 0.2 Co 4 Sb 12 reached 5-6 mW/(m·K) during the measurement temperature.Thermal conductivity decreased with increase of Yb content,and the thermal conductivity of Yb 0.2 Co 4 Sb 12 reached 3.2 W/(m·K) at 600 K.The ZT value of Yb 0.2 Co 4 Sb 12 reached 1.16 at 700 K due to positive contribution from high power factor and low thermal conductivity. 展开更多
关键词 thermoelectric properties power factor Yb-filling thermal conductivity rare earths
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部