期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Experimental Investigation and Modelling for the Optimisation of Conduction Cooled HTS Hybrid Current Leads for SMES
1
作者 程德威 王惠龄 +3 位作者 Spiller D M Huang Y B 饶荣水 唐跃进 《Transactions of Tianjin University》 EI CAS 2003年第1期16-20,共5页
It′s important that HTS tapes have lower thermal conductivity and higher transversal resistivity in order to reduce the heat leaks conducted along the tapes and AC losses in the high temperature superconducting syste... It′s important that HTS tapes have lower thermal conductivity and higher transversal resistivity in order to reduce the heat leaks conducted along the tapes and AC losses in the high temperature superconducting system conduction cooled by GM coolers. This paper presents an experimental investigation into the effects of pure Ag and AgAu alloys sheath materials on the properties of Bi(2223) multifilamentary tapes and the optimisation of conduction cooled hybrid current leads made from copper and Bi(2223)/Ag or Bi(2223)/AgAu tapes. The thermal conductivity of the tapes were measured by cryogenic steady heat flux method and the resistance was measured by using standard DC four probe method at low temperature. The results showed that the reduction of thermal conductivity by the addition of Au into the sheath material of Bi(2223) tapes was 65 0 0, 75 0 0 and 85 0 0 lower than that of pure Ag sheathed Bi(2223) tapes and the increase of resistivity was 4.9 , 10 and 19.4 times higher than that of pure Ag for the addition of 2.2 0 0, 5.7 0 0 and 10.7 0 0Au(atom ratio) respectively. And the study also attempts to optimise thermodynamically the conduction cooled hybrid current lead by using a developed model, which took the irreversibility of commercial GM coolers, the contact resistance and thermal conductance into account. Predictions from the model showed that AgAu alloys were suitable candidate materials to replace Ag as sheath material of Bi(2223) tapes applied in HTS current leads. In addition, Bi(2223)/AgAu was a suitable material to be applied as the HTS section of hybrid current leads in conduction cooled superconducting electric systems. 展开更多
关键词 Bi(2223) tape thermodynamic optimisation current lead conduction cooled superconducting magnetic energy storage
下载PDF
Loading experiment and thermal analysis for conduction cooled magnet of SMES system
2
作者 Gang WU Huiling WANG +4 位作者 Jiangbo XIE Yan ZHAO Yuejin TANG Jindong LI Jing SHI 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2009年第2期214-219,共6页
China’s first 35 kJ high temperature superconducting magnetic energy storage(SMES)system with an experiment equipment was depicted.The dynamic heat analysis of the magnet of the SMES was conducted through the current... China’s first 35 kJ high temperature superconducting magnetic energy storage(SMES)system with an experiment equipment was depicted.The dynamic heat analysis of the magnet of the SMES was conducted through the current load test on the directly cooled conduction magnet.The research results were as follows:when the converter charges and discharges the magnet for energy storage,the hysteresis loss is the main part of power loss,and contributes significantly to temperature rise;reducing the current frequency at the side of direct current is conducive to restraining temperature rise.The optimizing factors of the cool-guide structure were analyzed based on the heat stability theory,and it was found that the heat transfer of its key part(at the top of the magnet)must be strengthened to reduce the axial temperature difference of the magnet. 展开更多
关键词 conduction cooled superconducting magnetic energy storage(SMES)magnet current load thermal analysis
原文传递
Numerical Calculation of the Peaking Factor of a Water-Cooled W/Cu Monoblock for a Divertor
3
作者 韩乐 常海萍 +1 位作者 张镜洋 许铁军 《Plasma Science and Technology》 SCIE EI CAS CSCD 2015年第9期802-808,共7页
In order to accurately predict the incident critical heat flux(ICHF,the heat flux at the heated surface when CHF occurs) of a water-cooled W/Cu monoblock for a divertor,the exact knowledge of its peaking factors(f_... In order to accurately predict the incident critical heat flux(ICHF,the heat flux at the heated surface when CHF occurs) of a water-cooled W/Cu monoblock for a divertor,the exact knowledge of its peaking factors(f_p) under one-sided heating conditions with different design parameters is a key issue.In this paper,the heat conduction in the solid domain of a water-cooled W/Cu monoblock is calculated numerically by assuming the local heat transfer coefficients(HTC)of the cooling wall to be functions of the local wall temperature,so as to obtain f_p.The reliability of the calculation method is validated by an experimental example result,with the maximum error of 2.1% only.The effects of geometric and flow parameters on the f_p of a water-cooled W/Cu monoblock are investigated.Within the scope of this study,it is shown that the f_p increases with increasing dimensionless W/Cu monoblock width and armour thickness(the shortest distance between the heated surface and Cu layer),and the maximum increases are 43.8% and 22.4% respectively.The dimensionless W/Cu monoblock height and Cu thickness have little effect on f_p.The increase of Reynolds number and Jakob number causes the increase of f_p,and the maximum increases are 6.8% and 9.6% respectively.Based on the calculated results,an empirical correlation on peaking factor is obtained via regression.These results provide a valuable reference for the thermal-hydraulic design of water-cooled divertors. 展开更多
关键词 conduction dimensionless peaking cooled heated Reynolds boiling sided validated exact
下载PDF
Effect of Boiling and Cooling of Geothermal Fluids on Precipitation of Secondary Minerals: A Case Study of Olkaria Fields, Kenya
4
作者 Emmanuel Onesimo Duku Benson G. Ongarora Paul Tanui 《Journal of Geoscience and Environment Protection》 2022年第9期251-270,共20页
The main drawback in the utilization of geothermal resources arises from the precipitation of secondary minerals within wells, pipelines, steam separators, turbines and other surface equipment in form of scales. Scale... The main drawback in the utilization of geothermal resources arises from the precipitation of secondary minerals within wells, pipelines, steam separators, turbines and other surface equipment in form of scales. Scale formation is an outcome of the alteration of various rocks dissolved in geothermal fluids that find their way into a reservoir. Once geothermal fluids ascend to the surface, hydrostatic pressure decreases toward a phase separation level that permits the dissolved gases such as CO<sub>2</sub>, H<sub>2</sub>S and H<sub>2</sub>, and steam to separate from the liquid phase by “boiling”. Stripping of these volatiles may increase fluid pH, leading to precipitation and deposition of secondary minerals. The study sought to establish the relationship between water-rock interaction and secondary mineral precipitates at the surface and deep fluid at different temperatures during depressurisation boiling and cooling. Samples were collected from selected Olkaria wells;OW-38A, OW-910 and OW-910A. The analysis of the results outlined deep fluid Alkali-Chloride waters and surface steam-heated Alkali-Bicarbonate and acidic Sulphate-Chloride waters. Various models suggested adiabatic boiling, conductive cooling and possible mixing and dilution in the wells. Hydrothermal alteration minerals were found to be in equilibrium with the geothermal fluids at varying temperatures, and the secondary minerals controlled the chemistry of the reservoir. Silica-saturated solutions precipitated silica in OW-910 and OW-910A, which may have resulted from rapid cooling following mixing with cold surface water. 展开更多
关键词 Adiabatic Boiling Aqueous Speciation CLOGGING Conductive Cooling Depressurisation Boiling Equilibrium Degassing Phase Separation Saturation Index
下载PDF
Design Evolution and Analysis of the ITER Cryostat Support System
5
作者 谢韩 宋云涛 王松可 《Plasma Science and Technology》 SCIE EI CAS CSCD 2015年第12期1061-1065,共5页
The cryostat is a vacuum tight container enveloping the entire basic systems of the ITER tokamak machine,including a vacuum vessel,a superconducting magnet and thermal shield etc.It is evacuated to a pressure of 10^-4... The cryostat is a vacuum tight container enveloping the entire basic systems of the ITER tokamak machine,including a vacuum vessel,a superconducting magnet and thermal shield etc.It is evacuated to a pressure of 10^-4Pa to limit the heat transfer via gas conduction and convection to the cryogenically cooled components.Another important function of cryostat is to support all the loads from the tokamak to the concrete floor of the pit by its support system during different operational regimes and accident scenarios.This paper briefly presents the design evolution and associated analysis of the cryostat support system and the structural interface with the building. 展开更多
关键词 tight vacuum briefly operational magnet conduction container scenarios bearings cooled
下载PDF
Analysis of Heat Transfer Behaviour of the Conduction Cold Plate System
6
作者 YangChun-xin DangChao-Bin 《Journal of Thermal Science》 SCIE EI CAS CSCD 1995年第4期236-240,共5页
The heat-transfer behaviour of the conduction cold plate system used for avionics is investigated in this paper. The steady-state temperature profile for the cold plate is derived and the relationship between the cool... The heat-transfer behaviour of the conduction cold plate system used for avionics is investigated in this paper. The steady-state temperature profile for the cold plate is derived and the relationship between the coolant mass flowrate, the heat load and the hashest cold plate temperature is established.A model is proposed to describe the transient thermal rosponse of the cold plate under thermal shock condition. The analytic solution of the transient heat transfer within the cold plate is provided. The results of this paper agree with those of the finite element method and can be used for the structural design and performance evaluation of cold plate system. 展开更多
关键词 AVIONICS conduction cooling system cold plate heat transfer.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部