Face centred cubic(FCC) TiB ceramic powder synthesized by Ti-boronizing method was used as conductive filler to make ceramic electrically conductive adhesives(ECAs) with the polymer matrix.Electrically conductive ...Face centred cubic(FCC) TiB ceramic powder synthesized by Ti-boronizing method was used as conductive filler to make ceramic electrically conductive adhesives(ECAs) with the polymer matrix.Electrically conductive properties of the ceramic ECAs were studied.The bulk electrical resistivity varied with the powder content of the FCC-TiB in ECAs.The FCC-TiB filled ECAs also showed the percolation behavior that usually occurred for the metal-filled ECAs,the percolation threshold was located at the content of 60%FCC-TiB.A minimum value of 0.1 Ω·cm was obtained at a content of 75%FCC-TiB.In order to check the reliability of mechanical property,tensile test was done to measure the shear strength,and the shear strength dropped with increasing the content of FCC-TiB powders.It is about 12.26 MPa at the content of 70%TiB powders.The Cu filled ECAs were also prepared for comparison.The properties of the oxidation resistance of the two ECAs were evaluated.The results show that the ceramic ECAs have excellent oxidation resistance and better stability compared with the Cu filled ECAs.展开更多
The electrochemical migration (ECM) behavior of the electrically conductive adhesives (ECAs) filled with pure Ag powder or Ag-plated Cu composite powder with varied Ag:Cu ratios was investigated under the condition of...The electrochemical migration (ECM) behavior of the electrically conductive adhesives (ECAs) filled with pure Ag powder or Ag-plated Cu composite powder with varied Ag:Cu ratios was investigated under the condition of applying constant voltage and distilled water environment.ECM resistance was determined from the current-time curves.The microstructure and composition of ECM dendrite products were analyzed by SEM/EDS and XRD.It was found that the ECM resistance of Ag-plated Cu composite powder-filled ECAs was evidently higher than that of pure Ag powder-filled ECAs.The Ag:Cu ratio of composite powder in ECAs had notable influence on ECM resistance,which was enhanced with the decrease of Ag:Cu ratios.The composition of dendrites formed between cathode and anode during ECM process was not uniform for Ag-plated Cu-filled ECAs.An ECM inhibiting mechanism of Ag-plated Cu composite powder was proposed according to analysis of the electrochemical impedance spectroscopy,Tafel plot and dendrite composition.展开更多
This study has been conducted to evaluate the application of silver nanoparticles(NPs)in Electrically Conductive Adhesives(ECAs),filled with hybrid silver flakes and NPs,and silver flakes as a control sample,at a fill...This study has been conducted to evaluate the application of silver nanoparticles(NPs)in Electrically Conductive Adhesives(ECAs),filled with hybrid silver flakes and NPs,and silver flakes as a control sample,at a filler loading of 78 wt.%,83 wt.%and 88 wt.%and cured at 150℃and 180℃,respectively.The results show that the electrical and thermal conductivities of ECAs were improved with the increasing of filler loading and curing temperature.Adding silver NPs in silver flakes negatively affected the electrical and thermal conductivities of ECAs at a low filler mass fraction of 78 wt.%,because the segregation of NPs enlarged the average distance of silver flakes;while it positively influenced the electrical and thermal conductivities of ECAs at a loading ratio of 88 wt.%,probably due to NPs filling in the gaps between silver flakes or even sintering together with each other or with silver flakes,especially when curing at high temperature of 180℃.展开更多
The deformation behavior and the contact area of conductive particles in anisotropically conductive adhesives (ACA) were investigated by finite element method (FEM). The solid conductive particles are made of pure Ni ...The deformation behavior and the contact area of conductive particles in anisotropically conductive adhesives (ACA) were investigated by finite element method (FEM). The solid conductive particles are made of pure Ni and Cu. The results indicate that the deformation of the conductive particles is inhomogeneous during fabrication. When the reduction in height is small the deformation concentrates in the area near the contact area. As the reduction in height increases, the strain in the area near the contact area increases, and the metal flows toward the circumference, resulting in the increase of the contact area between the conductive particles and pad. The higher the degree of deformation, the larger the contact area. The regression equations were offered to express the relations between the bounding force and the contact area or the reduction in height. An approach of how to obtain the maximum contact area in ACA was discussed.展开更多
Anisotropic conductive adhesive technology for electronics packaging and interconnect application has significantly been developed during the last few years. It is time to make a summary of what has been done in this ...Anisotropic conductive adhesive technology for electronics packaging and interconnect application has significantly been developed during the last few years. It is time to make a summary of what has been done in this field. The present paper reviews the technology development, especially from the reliability point of view. It is pointed out that anisotropic conductive adhesives are now widely used in many applications and the reliability data and models have been developed to a large extent for anisotropic conductive adhesives in various applications.展开更多
By means of testing the shear strength with single lap joint, measuring electrical resistivity for cured products and the curing strain with strain gauges, the effect of cure parameters on the properties of HT1012 con...By means of testing the shear strength with single lap joint, measuring electrical resistivity for cured products and the curing strain with strain gauges, the effect of cure parameters on the properties of HT1012 conductive adhesive filled with copper powder was investigated, and the residual stress in the conductive adhesives was also estimated. The experimental results show that the properties such as shear strength of the adhesives, electrical resistivity of products as well as the residual stress of cured HT 1012 copperfitted conductive adhesive were evidently affected by curing temperature and time. The diagrams of scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) were also used to determine the properties. The higher mechanical property was achieved under the condition of curing the adhesive 3 h at 60 ℃ as the density of the hydrogen links or linkages existed in the adhesive was relatively higher and the lower electrical resistivity occurred at 80 ℃.展开更多
The paper deals with unusual use of one kind of ECA (electrically conductive adhesive)---the ICA (isotropic conductive adhesive). The main sphere of ECA application is electronic assembly, e.g., it is bonding of s...The paper deals with unusual use of one kind of ECA (electrically conductive adhesive)---the ICA (isotropic conductive adhesive). The main sphere of ECA application is electronic assembly, e.g., it is bonding of semiconductor microchips on printed circuits boards. In this sphere, the ECA compete with soft solder. In spite of this fact, the author utilized of two main ECA characteristics--good electrical conductivity and excellent adhesion to material surfaces to make the fiat thermocouples. Both the design of thermocouples and the measuring device and the measuring workplace arrangement are described. The measured data of thermoelectric voltages are plotted. The thermoelectric (Seebeck's) coefficients were calculated from obtained dependences of thermoelectric voltage versus the temperature differences.展开更多
Design of rapidly detachable adhesives with high initial bonding strength is of great significance but it is full of great challenge. Here, we report the fast electrically detaching behavior (100% detaching efficiency...Design of rapidly detachable adhesives with high initial bonding strength is of great significance but it is full of great challenge. Here, we report the fast electrically detaching behavior (100% detaching efficiency in just 1 min under dozens of DC voltage) and high initial bonding strength (>12 MPa) of epoxy-based ionic conductive adhesives (ICAs). The epoxy-based ICAs are fabricated by introducing polyethylene glycol dimethyl ether (PEGDE) and 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([EMIM]OTF) into epoxy. The combination of PEGDE and [EMIM]OTF enables the free ions to migrate directively in electric field, and the anchoring of PEG chains onto epoxy chains ensures the long-term reliability of ICAs. The investigation on the electrically detaching mechanism suggests that the enrichment and following rapid interfacial electrochemical reactions of [EMIM]OTF lead to formation of metal hydroxide (Me(OH)n) nanoparticles at the bonding interfaces, thus the strong interactions containing interlocked forces, van de Waals’ forces and hydrogen bonding interactions between ICAs and bonding substrates are destroyed. This work provides a promising direction for detachable adhesives with both high initial bonding strength and high detaching efficiency in short time.展开更多
A novel graphene oxide (GO) modified polyurethane thermal conductive insulating adhesive with small addition and excellent insulation properties was prepared by in-situ polymerization using GO as thermal conductive fi...A novel graphene oxide (GO) modified polyurethane thermal conductive insulating adhesive with small addition and excellent insulation properties was prepared by in-situ polymerization using GO as thermal conductive filler.The effects of GO content on the mechanical performance,thermal conductivity,thermal stability and insulation properties of the modified polyurethane adhesive were studied.The results showed that the tensile strength and elongation at break of polyurethane adhesive increased at first and then decreased with the increase of GO content.The thermal conductivity and thermal decomposition temperature of GO/PU composite adhesive can be effectively improved by adding appropriate amount of GO.The tensile strength,thermal conductivity and thermal decomposition temperature of polyurethane adhesive reached the maximum when GO content was 1.5 wt%.The novel GO-modified polyurethane adhesive exhibited good insulation property.The development of GO/PU thermal conductive adhesive will provide a facile method for effectively solving the “trade-off” problem between low filling and high thermal conductivity.展开更多
The development of flexible and stretchable electronics has attracted much attention.As an important part of wearable electronic systems,the connection between conductive yarns and electronic components affects the st...The development of flexible and stretchable electronics has attracted much attention.As an important part of wearable electronic systems,the connection between conductive yarns and electronic components affects the stability and accuracy of their electrical reliability.In this paper,three different connections were attempted to electrically and mechanically link two conductive yarns,including soldering followed by waterborne polyurethane(WPU)encapsulation,coating of conductive silver adhesive with WPU encapsulation,as well as coating of conductive silver adhesive with polydimethylsiloxane(PDMS)encapsulation.The surface morphologies and electro-mechanical behaviors of the three created connected conductive yarns were characterized.Compared with their electro-mechanical behaviors of the established three connections,the connection with soldering remained electrically conductive to around 200%,which mainly came from the stress concentration between the stiff soldering and soft conductive yarns.However,the coating of conductive silver adhesive and encapsulated protection of PDMS can make the connected conductive yarns stretchable up to 300%with almost constant electrical resistance.展开更多
A calculation formula of thermal-hydro-mechanical(THM)coupling crack initiation rate for brittle rock was derived based on the energy conservation law.The self-designed THM coupling fracture test with conductive adhe...A calculation formula of thermal-hydro-mechanical(THM)coupling crack initiation rate for brittle rock was derived based on the energy conservation law.The self-designed THM coupling fracture test with conductive adhesive electrical measurement method was applied to measuring the THM coupling crack propagation rate of brittle rock continuously.Research results show that both calculation and test results of crack initiation rate increased with increase of the temperature and the hydraulic pressure.They are almost in good agreement,which can prove validity of the calculation formula of THM coupling crack initiation rate.展开更多
基金Project (51172088) supported by the National Natural Science Foundation of China
文摘Face centred cubic(FCC) TiB ceramic powder synthesized by Ti-boronizing method was used as conductive filler to make ceramic electrically conductive adhesives(ECAs) with the polymer matrix.Electrically conductive properties of the ceramic ECAs were studied.The bulk electrical resistivity varied with the powder content of the FCC-TiB in ECAs.The FCC-TiB filled ECAs also showed the percolation behavior that usually occurred for the metal-filled ECAs,the percolation threshold was located at the content of 60%FCC-TiB.A minimum value of 0.1 Ω·cm was obtained at a content of 75%FCC-TiB.In order to check the reliability of mechanical property,tensile test was done to measure the shear strength,and the shear strength dropped with increasing the content of FCC-TiB powders.It is about 12.26 MPa at the content of 70%TiB powders.The Cu filled ECAs were also prepared for comparison.The properties of the oxidation resistance of the two ECAs were evaluated.The results show that the ceramic ECAs have excellent oxidation resistance and better stability compared with the Cu filled ECAs.
基金financially supported by the Special Funds of National Ministry of Finance for the Transformation of Industrial Technology Achievements (No.CJ2007-475)
文摘The electrochemical migration (ECM) behavior of the electrically conductive adhesives (ECAs) filled with pure Ag powder or Ag-plated Cu composite powder with varied Ag:Cu ratios was investigated under the condition of applying constant voltage and distilled water environment.ECM resistance was determined from the current-time curves.The microstructure and composition of ECM dendrite products were analyzed by SEM/EDS and XRD.It was found that the ECM resistance of Ag-plated Cu composite powder-filled ECAs was evidently higher than that of pure Ag powder-filled ECAs.The Ag:Cu ratio of composite powder in ECAs had notable influence on ECM resistance,which was enhanced with the decrease of Ag:Cu ratios.The composition of dendrites formed between cathode and anode during ECM process was not uniform for Ag-plated Cu-filled ECAs.An ECM inhibiting mechanism of Ag-plated Cu composite powder was proposed according to analysis of the electrochemical impedance spectroscopy,Tafel plot and dendrite composition.
基金Project was supported by the Natural Science Foundation of Guangdong Province(No.2019A1515011844)the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory(ZHD201801 and 31512050201).
文摘This study has been conducted to evaluate the application of silver nanoparticles(NPs)in Electrically Conductive Adhesives(ECAs),filled with hybrid silver flakes and NPs,and silver flakes as a control sample,at a filler loading of 78 wt.%,83 wt.%and 88 wt.%and cured at 150℃and 180℃,respectively.The results show that the electrical and thermal conductivities of ECAs were improved with the increasing of filler loading and curing temperature.Adding silver NPs in silver flakes negatively affected the electrical and thermal conductivities of ECAs at a low filler mass fraction of 78 wt.%,because the segregation of NPs enlarged the average distance of silver flakes;while it positively influenced the electrical and thermal conductivities of ECAs at a loading ratio of 88 wt.%,probably due to NPs filling in the gaps between silver flakes or even sintering together with each other or with silver flakes,especially when curing at high temperature of 180℃.
文摘The deformation behavior and the contact area of conductive particles in anisotropically conductive adhesives (ACA) were investigated by finite element method (FEM). The solid conductive particles are made of pure Ni and Cu. The results indicate that the deformation of the conductive particles is inhomogeneous during fabrication. When the reduction in height is small the deformation concentrates in the area near the contact area. As the reduction in height increases, the strain in the area near the contact area increases, and the metal flows toward the circumference, resulting in the increase of the contact area between the conductive particles and pad. The higher the degree of deformation, the larger the contact area. The regression equations were offered to express the relations between the bounding force and the contact area or the reduction in height. An approach of how to obtain the maximum contact area in ACA was discussed.
文摘Anisotropic conductive adhesive technology for electronics packaging and interconnect application has significantly been developed during the last few years. It is time to make a summary of what has been done in this field. The present paper reviews the technology development, especially from the reliability point of view. It is pointed out that anisotropic conductive adhesives are now widely used in many applications and the reliability data and models have been developed to a large extent for anisotropic conductive adhesives in various applications.
基金Founded by the Major Research Programs(No.2003Z001)of ScienceTechnology of Hubei Provincial Department of Education,China
文摘By means of testing the shear strength with single lap joint, measuring electrical resistivity for cured products and the curing strain with strain gauges, the effect of cure parameters on the properties of HT1012 conductive adhesive filled with copper powder was investigated, and the residual stress in the conductive adhesives was also estimated. The experimental results show that the properties such as shear strength of the adhesives, electrical resistivity of products as well as the residual stress of cured HT 1012 copperfitted conductive adhesive were evidently affected by curing temperature and time. The diagrams of scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) were also used to determine the properties. The higher mechanical property was achieved under the condition of curing the adhesive 3 h at 60 ℃ as the density of the hydrogen links or linkages existed in the adhesive was relatively higher and the lower electrical resistivity occurred at 80 ℃.
文摘The paper deals with unusual use of one kind of ECA (electrically conductive adhesive)---the ICA (isotropic conductive adhesive). The main sphere of ECA application is electronic assembly, e.g., it is bonding of semiconductor microchips on printed circuits boards. In this sphere, the ECA compete with soft solder. In spite of this fact, the author utilized of two main ECA characteristics--good electrical conductivity and excellent adhesion to material surfaces to make the fiat thermocouples. Both the design of thermocouples and the measuring device and the measuring workplace arrangement are described. The measured data of thermoelectric voltages are plotted. The thermoelectric (Seebeck's) coefficients were calculated from obtained dependences of thermoelectric voltage versus the temperature differences.
基金supported by the National Natural Science Foundation of China (No. 52103097)the Doctor Foundation of Southwest University of Science and Technology (No. 20zx7144)+3 种基金the Special Foundation for Young Scientists of Sichuan Province (No. 71112541)the Guangdong Natural Science Foundation (No. 2021A1515010675)the Key Project of Guangzhou Science and Technology Plan Project (No. 201904020034)the Guangdong Project of R&D Plan in Key Areas (No. 2020B010180001).
文摘Design of rapidly detachable adhesives with high initial bonding strength is of great significance but it is full of great challenge. Here, we report the fast electrically detaching behavior (100% detaching efficiency in just 1 min under dozens of DC voltage) and high initial bonding strength (>12 MPa) of epoxy-based ionic conductive adhesives (ICAs). The epoxy-based ICAs are fabricated by introducing polyethylene glycol dimethyl ether (PEGDE) and 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([EMIM]OTF) into epoxy. The combination of PEGDE and [EMIM]OTF enables the free ions to migrate directively in electric field, and the anchoring of PEG chains onto epoxy chains ensures the long-term reliability of ICAs. The investigation on the electrically detaching mechanism suggests that the enrichment and following rapid interfacial electrochemical reactions of [EMIM]OTF lead to formation of metal hydroxide (Me(OH)n) nanoparticles at the bonding interfaces, thus the strong interactions containing interlocked forces, van de Waals’ forces and hydrogen bonding interactions between ICAs and bonding substrates are destroyed. This work provides a promising direction for detachable adhesives with both high initial bonding strength and high detaching efficiency in short time.
基金Funded by the Liaoning Natural Science Fund Project (No.20180550432)Liaoning Provincial Science and Technology Department Doctoral Research Start-Up Fund Project (No.2020-BS-158)Liaoning Provincial Department of Education Fund Project (Nos.lnfw202014 and LJKQZ2021060)。
文摘A novel graphene oxide (GO) modified polyurethane thermal conductive insulating adhesive with small addition and excellent insulation properties was prepared by in-situ polymerization using GO as thermal conductive filler.The effects of GO content on the mechanical performance,thermal conductivity,thermal stability and insulation properties of the modified polyurethane adhesive were studied.The results showed that the tensile strength and elongation at break of polyurethane adhesive increased at first and then decreased with the increase of GO content.The thermal conductivity and thermal decomposition temperature of GO/PU composite adhesive can be effectively improved by adding appropriate amount of GO.The tensile strength,thermal conductivity and thermal decomposition temperature of polyurethane adhesive reached the maximum when GO content was 1.5 wt%.The novel GO-modified polyurethane adhesive exhibited good insulation property.The development of GO/PU thermal conductive adhesive will provide a facile method for effectively solving the “trade-off” problem between low filling and high thermal conductivity.
基金National Natural Science Foundation of China(Nos.12002085 and 51603039)Shanghai Pujiang Program,China(No.19S10462)+3 种基金Fundamental Research Funds for the Central Universities,China(Nos.2232017D-12 and 20K10405)Key Laboratory of Textile Science and Technology(Donghua University)Ministry of Education,China(No.KLTST201623)Initial Research Funds for Young Teachers of Donghua University,China(No.104-07-005388)。
文摘The development of flexible and stretchable electronics has attracted much attention.As an important part of wearable electronic systems,the connection between conductive yarns and electronic components affects the stability and accuracy of their electrical reliability.In this paper,three different connections were attempted to electrically and mechanically link two conductive yarns,including soldering followed by waterborne polyurethane(WPU)encapsulation,coating of conductive silver adhesive with WPU encapsulation,as well as coating of conductive silver adhesive with polydimethylsiloxane(PDMS)encapsulation.The surface morphologies and electro-mechanical behaviors of the three created connected conductive yarns were characterized.Compared with their electro-mechanical behaviors of the established three connections,the connection with soldering remained electrically conductive to around 200%,which mainly came from the stress concentration between the stiff soldering and soft conductive yarns.However,the coating of conductive silver adhesive and encapsulated protection of PDMS can make the connected conductive yarns stretchable up to 300%with almost constant electrical resistance.
基金Project(51474251) supported by the National Natural Science Foundation of China
文摘A calculation formula of thermal-hydro-mechanical(THM)coupling crack initiation rate for brittle rock was derived based on the energy conservation law.The self-designed THM coupling fracture test with conductive adhesive electrical measurement method was applied to measuring the THM coupling crack propagation rate of brittle rock continuously.Research results show that both calculation and test results of crack initiation rate increased with increase of the temperature and the hydraulic pressure.They are almost in good agreement,which can prove validity of the calculation formula of THM coupling crack initiation rate.