期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Carbonate-salt-based composite materials for medium- and high-temperature thermal energy storage 被引量:19
1
作者 Zhiwei Ge Feng Ye +3 位作者 Hui Cao Guanghui Leng Yue Qin Yulong Ding 《Particuology》 SCIE EI CAS CSCD 2014年第4期77-81,共5页
This paper discusses composite materials based on inorganic salts for medium- and high-temperature thermal energy storage application. The composites consist of a phase change material (PCM), a ceramic material, and... This paper discusses composite materials based on inorganic salts for medium- and high-temperature thermal energy storage application. The composites consist of a phase change material (PCM), a ceramic material, and a high thermal conductivity material. The ceramic material forms a microstructural skeleton for encapsulation of the PCM and structural stability of the composites; the high thermal conductivity material enhances the overall thermal conductivity of the composites. Using a eutectic salt of lithium and sodium carbonates as the PCM, magnesium oxide as the ceramic skeleton, and either graphite flakes or carbon nanotubes as the thermal conductivity enhancer, we produced composites with good physical and chemical stability and high thermal conductivity. We found that the wettability of the molten salt on the ceramic and carbon materials significantly affects the microstructure of the composites. 展开更多
关键词 Thermal energy storage composite materials Microstructure Thermal conductivity Phase change material
原文传递
Recent Progress in All-Solution-Processed Organic Solar Cells
2
作者 Yixuan Xu Qian Wang +5 位作者 Wentao Zou Xu Zhang Yanna Sun Yuanyuan Kan Ping Cai Ke Gao 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2024年第2期190-198,共9页
All-solution-processed organic solar cells(OSCs)(from the bottom electrode to the top electrode)are highly attractive thanks to their low cost,lightweight and high-throughput production.However,achieving highly effici... All-solution-processed organic solar cells(OSCs)(from the bottom electrode to the top electrode)are highly attractive thanks to their low cost,lightweight and high-throughput production.However,achieving highly efficient all-solution-processed OSCs remains a significant challenge.One of the key issues is the lack of high-quality solution-processed electrode systems that can replace indium tin oxide(ITO)and vacuum-deposited metal electrodes.In this paper,we comprehensively review recent advances in all-solution-processed osCs,and classified the devices as the top electrode materials,including silver nanowires(AgNWs),conducting polymers and composite conducting materials.The correlation between electrode materials,properties of electrodes,and device performance in all-solution-processed OSCs is elucidated.In addition,the critical roles of the active layer and interface layer are also discussed.Finally,the prospects and challenges of all-solution-processed OSCs are presented. 展开更多
关键词 Organic solar cells All-solution-processed organic solar cells Solution-processed electrodes High performance Silver nanowires conductive polymers composite conducting materials
原文传递
Printable inorganic nanomaterials for flexible transparent electrodes:from synthesis to application 被引量:3
3
作者 Dingrun Wang Yongfeng Mei Gaoshan Huang 《Journal of Semiconductors》 EI CAS CSCD 2018年第1期16-37,共22页
Printed and flexible electronics are definitely promising cutting-edge electronic technologies of the future. They offer a wide-variety of applications such as flexible circuits, flexible displays, flexible solar cell... Printed and flexible electronics are definitely promising cutting-edge electronic technologies of the future. They offer a wide-variety of applications such as flexible circuits, flexible displays, flexible solar cells, skinlike pressure sensors, and radio frequency identification tags in our daily life. As the most-fundamental component of electronics, electrodes are made of conductive materials that play a key role in flexible and printed electronic devices. In this review, various inorganic conductive materials and strategies for obtaining highly conductive and uniform electrodes are demonstrated. Applications of printed electrodes fabricated via these strategies are also described. Nevertheless, there are a number of challenges yet to overcome to optimize the processing and performance of printed electrodes. 展开更多
关键词 printed electrodes conductive ink metal nanomaterials carbonaceous materials composite nanomaterials
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部