Graphene-based thermally conductive composites have been proposed as effective thermal management materials for cooling high-power electronic devices.However,when flexible graphene nanosheets are assembled into macros...Graphene-based thermally conductive composites have been proposed as effective thermal management materials for cooling high-power electronic devices.However,when flexible graphene nanosheets are assembled into macroscopic thermally conductive composites,capillary forces induce shrinkage of graphene nanosheets to form wrinkles during solution-based spontaneous drying,which greatly reduces the thermal conductivity of the composites.Herein,graphene nanosheets/aramid nanofiber(GNS/ANF)composite films with high thermal conductivity were prepared by in-plane stretching of GNS/ANF composite hydrogel networks with hydrogen bonds andπ-πinteractions.The in-plane mechanical stretching eliminates graphene nanosheets wrinkles by suppressing inward shrinkage due to capillary forces during drying and achieves a high in-plane orientation of graphene nanosheets,thereby creating a fast in-plane heat transfer channel.The composite films(GNS/ANF-60 wt%)with eliminated graphene nanosheets wrinkles showed a significant increase in thermal conductivity(146 W m^(−1)K^(−1))and tensile strength(207 MPa).The combination of these excellent properties enables the GNS/ANF composite films to be effectively used for cooling flexible LED chips and smartphones,showing promising applications in the thermal management of high-power electronic devices.展开更多
Despite the growing demand for transparent conductive films in smart and wearable electronics for electromagnetic interference(EMI)shielding,achieving a flexible EMI shielding film,while maintaining a high transmittan...Despite the growing demand for transparent conductive films in smart and wearable electronics for electromagnetic interference(EMI)shielding,achieving a flexible EMI shielding film,while maintaining a high transmittance remains a significant challenge.Herein,a flexible,transparent,and conductive copper(Cu)metal mesh film for EMI shielding is fabricated by self-forming crackle template method and electroplating technique.The Cu mesh film shows an ultra-low sheet resistance(0.18Ω□^(-1)),high transmittance(85.8%@550 nm),and ultra-high figure of merit(>13,000).It also has satisfactory stretchability and mechanical stability,with a resistance increases of only 1.3%after 1,000 bending cycles.As a stretchable heater(ε>30%),the saturation temperature of the film can reach over 110°C within 60 s at 1.00 V applied voltage.Moreover,the metal mesh film exhibits outstanding average EMI shielding effectiveness of 40.4 dB in the X-band at the thickness of 2.5μm.As a demonstration,it is used as a transparent window for shielding the wireless communication electromagnetic waves.Therefore,the flexible and transparent conductive Cu mesh film proposed in this work provides a promising candidate for the next-generation EMI shielding applications.展开更多
Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effe...Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effectively addresses the aforementioned problems;however,the impact of its quality on lithium-ion transfer and structure durability is yet to be explored.Herein,the influence of an interface conductive network on ionic transport and mechanical stability under fast charging is explored for the first time.2D modeling simulation and Cryo-transmission electron microscopy precisely reveal the mitigation of interface polarization owing to a higher fraction of conductive inorganic species formation in bilayer solid electrolyte interphase is mainly responsible for a linear decrease in ionic diffusion energy barrier.Furthermore,atomic force microscopy and Raman shift exhibit substantial stress dissipation generated by a complete conductive network,which is critical to the linear reduction of electrode residual stress.This study provides insights into the rational design of optimized interface SiO-based anodes with reinforced fast-charging performance.展开更多
Tissue engineering(TE)continues to be widely explored as a potential solution to meet critical clinical needs for diseased tissue replacement and tissue regeneration.In this study,we developed a poly(2-hydroxyethyl me...Tissue engineering(TE)continues to be widely explored as a potential solution to meet critical clinical needs for diseased tissue replacement and tissue regeneration.In this study,we developed a poly(2-hydroxyethyl methacrylate-co-methacrylic acid)(pHEMA-co-MAA)based hydrogel loaded with newly synthesized conductive poly(3,4-ethylene-dioxythiophene)(PEDOT)and polypyrrole(PPy)nanoparticles(NPs),and subsequently processed these hydrogels into tissue engineered constructs via three-dimensional(3D)printing.The presence of the NPs was critical as they altered the rheological properties during printing.However,all samples exhibited suitable shear thinning properties,allowing for the development of an optimized processing window for 3D printing.Samples were 3D printed into pre-determined disk-shaped configurations of 2 and 10 mm in height and diameter,respectively.We observed that the NPs disrupted the gel crosslinking efficiencies,leading to shorter degradation times and compressive mechanical properties ranging between 450 and 550 kPa.The conductivity of the printed hydrogels increased along with the NP concentration to(5.10±0.37)×10^(−7)S/cm.In vitro studies with cortical astrocyte cell cultures demonstrated that exposure to the pHEMA-co-MAA NP hydrogels yielded high cellular viability and proliferation rates.Finally,hydrogel antimicrobial studies with staphylococcus epidermidis bacteria revealed that the developed hydrogels affected bacterial growth.Taken together,these materials show promise for various TE strategies.展开更多
Carbon was used as electronic conductive agent, and metasilicic acid lithium (Li<sub>2</sub>SiO<sub>3</sub>) as ionic conductive agent, the two factors were investigated cooperatively. We evalu...Carbon was used as electronic conductive agent, and metasilicic acid lithium (Li<sub>2</sub>SiO<sub>3</sub>) as ionic conductive agent, the two factors were investigated cooperatively. We evaluated their effect by using spherical spinel LiMn<sub>2</sub>O<sub>4</sub> which prepared ourselves as cathode material. Then Li<sub>2</sub>SiO<sub><sub></sub>3</sub>/carbon surface coating on LiMn<sub><sub></sub>2</sub>O<sub>4</sub> (LMO/C/LSO) which Li<sub><sub></sub>2</sub>SiO<sub><sub></sub>3</sub> inside and carbon/Li<sub><sub></sub>2</sub>SiO<sub><sub></sub>3</sub> coated LiMn<sub><sub></sub>2</sub>O<sub><sub></sub>4</sub> (LMO/LSO/C) were prepared, All of materials were characterized by X-ray diffraction (XRD) and electrochemical test;spherical LiMn<sub></sub>2O<sub></sub>4 was characterized by scanning electron microscopy (SEM);and coated materials were characterized by transmission electron microscopy (TEM). While uncoated spinel LiMn<sub><sub></sub>2</sub>O<sub><sub></sub>4</sub> maintained 72% of capacity in 60 cycles by the rate of 0.2C, and LMO/LSO/C showed the best electrochemical performance, 89% of the initial capacity remained after 75 cycles at 0.2C. Furthermore, the rate performance of LMO/LSO/C also improved obviously, about 30 mAh·g<sup>-1</sup> of capacity attained at the rate of 5C, higher than LMO/C/LSO and bare LiMn<sub><sub></sub>2</sub>O<sub><sub></sub>4</sub>.展开更多
The advent of the 5G era has stimulated the rapid development of high power electronics with dense integration.Three-dimensional(3D)thermally conductive networks,possessing high thermal and electrical conductivities a...The advent of the 5G era has stimulated the rapid development of high power electronics with dense integration.Three-dimensional(3D)thermally conductive networks,possessing high thermal and electrical conductivities and many different structures,are regarded as key materials to improve the performance of electronic devices.We provide a critical overview of carbonbased 3D thermally conductive networks,emphasizing their preparation-structure-property relationships and their applications in different scenarios.A detailed discussion of the microscopic principles of thermal conductivity is provided,which is crucial for increasing it.This is followed by an in-depth account of the construction of 3D networks using different carbon materials,such as graphene,carbon foam,and carbon nanotubes.Techniques for the assembly of two-dimensional graphene into 3D networks and their effects on thermal conductivity are emphasized.Finally,the existing challenges and future prospects for 3D carbon-based thermally conductive networks are discussed.展开更多
This study prepared four types of ionic liquid-modified polypyrrole(IL-modified PPy)as conductive additives and investigated their tribological performance and conductivity in polytetrafluoroethylene lubricating greas...This study prepared four types of ionic liquid-modified polypyrrole(IL-modified PPy)as conductive additives and investigated their tribological performance and conductivity in polytetrafluoroethylene lubricating grease.The results indicated that IL-modified PPy effectively enhanced the anti-wear performance and conductivity of the base grease.Among the additives,1-octyl-3-methylimidazolium tetrafluoroborate([OMIm][BF4])modified PPy showed superior performance compared to the other three additives,with the best effect observed at a mass fraction of 0.5%.X-ray photoelectron spectroscopy analysis revealed that IL-modified PPy forms a stable friction chemical film during the friction process,effectively enhancing the lubrication performance and conductivity of the base grease.This indicates broad potential applications in the field of conductive lubrication.展开更多
Sulfide-based inorganic solid electrolytes are promising materials for high-performance safe solid-state batteries.The high ion conductivity,mechanical characteristics,and good processability of sulfide-based inorgani...Sulfide-based inorganic solid electrolytes are promising materials for high-performance safe solid-state batteries.The high ion conductivity,mechanical characteristics,and good processability of sulfide-based inorganic solid electrolytes are desirable properties for realizing high-performance safe solid-state batteries by replacing conventional liquid electrolytes.However,the low chemical and electrochemical stability of sulfide-based inorganic solid electrolytes hinder the commercialization of sulfide-based safe solid-state batteries.Particularly,the instability of sulfide-based inorganic solid electrolytes is intensified in the cathode,comprising various materials.In this study,carbonate-based ionic conductive polymers are introduced to the cathode to protect cathode materials and suppress the reactivity of sulfide electrolytes.Several instruments,including electrochemical spectroscopy,X-ray photoelectron spectroscopy,and scanning electron microscopy,confirm the chemical and electrochemical stability of the polymer electrolytes in contact with sulfide-based inorganic solid electrolytes.Sulfide-based solid-state cells show stable electrochemical performance over 100 cycles when the ionic conductive polymers were applied to the cathode.展开更多
Highly thermally conductive graphitic film(GF)materials have become a competitive solution for the thermal management of high-power electronic devices.However,their catastrophic structural failure under extreme altern...Highly thermally conductive graphitic film(GF)materials have become a competitive solution for the thermal management of high-power electronic devices.However,their catastrophic structural failure under extreme alternating thermal/cold shock poses a significant challenge to reliability and safety.Here,we present the first investigation into the structural failure mechanism of GF during cyclic liquid nitrogen shocks(LNS),which reveals a bubbling process characterized by“permeation-diffusion-deformation”phenomenon.To overcome this long-standing structural weakness,a novel metal-nanoarmor strategy is proposed to construct a Cu-modified graphitic film(GF@Cu)with seamless heterointerface.This well-designed interface ensures superior structural stability for GF@Cu after hundreds of LNS cycles from 77 to 300 K.Moreover,GF@Cu maintains high thermal conductivity up to 1088 W m^(−1)K^(−1)with degradation of less than 5%even after 150 LNS cycles,superior to that of pure GF(50%degradation).Our work not only offers an opportunity to improve the robustness of graphitic films by the rational structural design but also facilitates the applications of thermally conductive carbon-based materials for future extreme thermal management in complex aerospace electronics.展开更多
Electrochemical lithium extraction from salt lakes is an effective strategy for obtaining lithium at a low cost.Nevertheless,the elevated Mg:Li ratio and the presence of numerous coexisting ions in salt lake brines gi...Electrochemical lithium extraction from salt lakes is an effective strategy for obtaining lithium at a low cost.Nevertheless,the elevated Mg:Li ratio and the presence of numerous coexisting ions in salt lake brines give rise to challenges,such as prolonged lithium extraction periods,diminished lithium extraction efficiency,and considerable environmental pollution.In this work,Li FePO4(LFP)served as the electrode material for electrochemical lithium extraction.The conductive network in the LFP electrode was optimized by adjusting the type of conductive agent.This approach resulted in high lithium extraction efficiency and extended cycle life.When the single conductive agent of acetylene black(AB)or multiwalled carbon nanotubes(MWCNTs)was replaced with the mixed conductive agent of AB/MWCNTs,the average diffusion coefficient of Li+in the electrode increased from 2.35×10^(-9)or 1.77×10^(-9)to 4.21×10^(-9)cm^(2)·s^(-1).At the current density of 20 mA·g^(-1),the average lithium extraction capacity per gram of LFP electrode increased from 30.36 mg with the single conductive agent(AB)to 35.62 mg with the mixed conductive agent(AB/MWCNTs).When the mixed conductive agent was used,the capacity retention of the electrode after 30 cycles reached 82.9%,which was considerably higher than the capacity retention of 65.8%obtained when the single AB was utilized.Meanwhile,the electrode with mixed conductive agent of AB/MWCNTs provided good cycling performance.When the conductive agent content decreased or the loading capacity increased,the electrode containing the mixed conductive agent continued to show excellent electrochemical performance.Furthermore,a self-designed,highly efficient,continuous lithium extraction device was constructed.The electrode utilizing the AB/MWCNT mixed conductive agent maintained excellent adsorption capacity and cycling performance in this device.This work provides a new perspective for the electrochemical extraction of lithium using LFP electrodes.展开更多
Thick electrodes can increase incorporation of active electrode materials by diminishing the proportion of inactive constituents,improving the overall energy density of batteries.However,thick electrodes fabricated us...Thick electrodes can increase incorporation of active electrode materials by diminishing the proportion of inactive constituents,improving the overall energy density of batteries.However,thick electrodes fabricated using the conventional slurry casting approach frequently exhibit an exacerbated accumulation of carbon additives and binders on their surfaces,invariably leading to compromised electrochemical properties.In this study,we introduce a designed conductive agent/binder composite synthesized from carbon nanotube and polytetrafluoroethylene.This agent/binder composite facilitates production of dry-process-prepared ultra-thick electrodes endowed with a three-dimensional and uniformly distributed percolative architecture,ensuring superior electronic conductivity and remarkable mechanical resilience.Using this approach,ultra-thick LiCoO_(2)(LCO) electrodes demonstrated superior cycling performance and rate capabilities,registering an impressive loading capacity of up to 101.4 mg/cm^(2),signifying a 242% increase in battery energy density.In another analytical endeavor,time-of-flight secondary ion mass spectroscopy was used to clarify the distribution of cathode electrolyte interphase(CEI) in cycled LCO electrodes.The results provide unprecedented evidence explaining the intricate correlation between CEI generation and carbon distribution,highlighting the intrinsic advantages of the proposed dry-process approach in fine-tu ning the CEI,with excellent cycling performance in batteries equipped with ultra-thick electrodes.展开更多
An experimental investigation into the thermal conductivity of CF-SiC two-phase composite asphalt concrete is presented.The main objective of this study was to verify the possibility of using SiC powder instead of min...An experimental investigation into the thermal conductivity of CF-SiC two-phase composite asphalt concrete is presented.The main objective of this study was to verify the possibility of using SiC powder instead of mineral powder as the thermal conductive filler to prepare a new type of asphalt concrete and improve the efficiency of electrothermal snow and ice melting systems accordingly.The thermal conductivity of asphalt concrete prepared with different thermally conductive fillers was tested by a transient plane source method,and the related performances were measured.Then the temperature rise rate and surface temperature were studied through field heating tests.Finally,the actual ice melting efficiency of the thermally conductive asphalt concrete was evaluated using an effective electrothermal system.As shown by the experimental results,the composite made of SiC powder and carbon fiber has a high thermal conductivity.When SiC replaces mineral powder,the thermal conductivity of the asphalt mixture increases first and then decreases with the increase of carbon fiber content.In the present study,in particular,the thermal conductivity attained a peak when the carbon fiber content was 0.2%of the aggregate mass.展开更多
The arc ignition system based on charring polymers has advantages of simple structure,low ignition power consumption and multiple ignitions,which bringing it broadly application prospect in hybrid propulsion system of...The arc ignition system based on charring polymers has advantages of simple structure,low ignition power consumption and multiple ignitions,which bringing it broadly application prospect in hybrid propulsion system of micro/nano satellite.However,charring polymers alone need a relatively high input voltage to achieve pyrolysis and ignition,which increases the burden and cost of the power system of micro/nano satellite in practical application.Adding conductive substance into charring polymers can effectively decrease the conducting voltage which can realize low voltage and low power consumption repeated ignition of arc ignition system.In this paper,a charring conductive polymer ignition grain with a cavity geometry in precombustion chamber,which is composed of PLA and multiwall carbon nanotubes(MWCNT)was proposed.The detailed ignition processes were analyzed and two different ignition mechanisms in the cavity of charring conductive polymers were revealed.The ignition characteristics of charring conductive polymers were also investigated at different input voltages,ignition grain structures,ignition locations and injection schemes in a visual ignition combustor.The results demonstrated that the ignition delay and external energy required for ignition were inversely correlated with the voltages applied to ignition grain.Moreover,the incremental depth of cavity shortened the ignition delay and external energy required for ignition while accelerated the propagation of flame.As the depth of cavity increased from 2 to 6 mm(at 50 V),the time of flame propagating out of ignition grain changed from 235.6 to 108 ms,and values of mean ignition delay time and mean external energy required for ignition decreased from 462.8 to 320 ms and 16.2 to 10.75 J,respectively.The rear side of the cavity was the ideal ignition position which had a shorter ignition delay and a faster flame propagation speed in comparison to other ignition positions.Compared to direct injection scheme,swirling injection provided a more favorable flow field environment in the cavity,which was beneficial to ignition and initial flame propagation,but the ignition position needed to be away from the outlet of swirling injector.At last,the repeated ignition characteristic of charring conductive polymers was also investigated.The ignition delay time and external energy required for ignition decreased with repeated ignition times but the variation was decreasing gradually.展开更多
Light-colored antistatic polyacrylonitrile(PAN)composite fiber was successfully prepared via a facile wet-spinning process using ATZO@TiO_(2)whiskers as conductive fillers.This kind of low-cost fiber meets the require...Light-colored antistatic polyacrylonitrile(PAN)composite fiber was successfully prepared via a facile wet-spinning process using ATZO@TiO_(2)whiskers as conductive fillers.This kind of low-cost fiber meets the requirements of light-colored and antistatic ability,which is quite suitable for mass production of dust-proof and safety workwear.The conductive whiskers are well dispersed in the fiber and form a continuous conductive pathway,which makes the fiber to possess a long conductive ability.The lowest resistance of antistatic ATZO@TiO_(2)/PAN fiber was 2.1×10^(7)Ω·cm.展开更多
Highly conductive polymer composites(CPCs) with excellent mechanical flexibility are ideal materials for designing excellent electromagnetic interference(EMI) shielding materials,which can be used for the electromagne...Highly conductive polymer composites(CPCs) with excellent mechanical flexibility are ideal materials for designing excellent electromagnetic interference(EMI) shielding materials,which can be used for the electromagnetic interference protection of flexible electronic devices.It is extremely urgent to fabricate ultra-strong EMI shielding CPCs with efficient conductive networks.In this paper,a novel silver-plated polylactide short fiber(Ag@PL ASF,AAF) was fabricated and was integrated with carbon nanotubes(CNT) to construct a multi-scale conductive network in polydimethylsiloxane(PDMS) matrix.The multi-scale conductive network endowed the flexible PDMS/AAF/CNT composite with excellent electrical conductivity of 440 S m-1and ultra-strong EMI shielding effectiveness(EMI SE) of up to 113 dB,containing only 5.0 vol% of AAF and 3.0 vol% of CNT(11.1wt% conductive filler content).Due to its excellent flexibility,the composite still showed 94% and 90% retention rates of EMI SE even after subjected to a simulated aging strategy(60℃ for 7 days) and 10,000 bending-releasing cycles.This strategy provides an important guidance for designing excellent EMI shielding materials to protect the workspace,environment and sensitive circuits against radiation for flexible electronic devices.展开更多
Thermal management has become a crucial problem for high-power-density equipment and devices.Phase change materials(PCMs)have great prospects in thermal management applications because of their large capacity of heat ...Thermal management has become a crucial problem for high-power-density equipment and devices.Phase change materials(PCMs)have great prospects in thermal management applications because of their large capacity of heat storage and isothermal behavior during phase transition.However,low intrinsic thermal conductivity,ease of leakage,and lack of flexibility severely limit their applications.Solving one of these problems often comes at the expense of other performance of the PCMs.In this work,we report core–sheath structured phase change nanocomposites(PCNs)with an aligned and interconnected boron nitride nanosheet network by combining coaxial electrospinning,electrostatic spraying,and hot-pressing.The advanced PCN films exhibit an ultrahigh thermal conductivity of 28.3 W m^(-1)K^(-1)at a low BNNS loading(i.e.,32 wt%),which thereby endows the PCNs with high enthalpy(>101 J g^(-1)),outstanding ductility(>40%)and improved fire retardancy.Therefore,our core–sheath strategies successfully balance the trade-off between thermal conductivity,flexibility,and phase change enthalpy of PCMs.Further,the PCNs provide powerful cooling solutions on 5G base station chips and thermoelectric generators,displaying promising thermal management applications on high-power-density equipment and thermoelectric conversion devices.展开更多
Highly ordered and uniformly porous structure of conductive foams is a vital issue for various functional purposes such as piezoresistive sensing and electromagnetic interference(EMI) shielding. With the aids of Kevla...Highly ordered and uniformly porous structure of conductive foams is a vital issue for various functional purposes such as piezoresistive sensing and electromagnetic interference(EMI) shielding. With the aids of Kevlar polyanionic chains, thermoplastic polyurethane(TPU) foams reinforced by aramid nanofibers(ANF) with adjustable pore-size distribution were successfully obtained via a nonsolvent-induced phase separation. In this regard, the most outstanding result is the in situ formation of ANF in TPU foams after protonation of Kevlar polyanion during the NIPS process. Furthermore, in situ growth of copper nanoparticles(Cu NPs) on TPU/ANF foams was performed according to the electroless deposition by using the tiny amount of pre-blended Ti_(3)C_(2)T_(x) MXene as reducing agents. Particularly, the existence of Cu NPs layers significantly promoted the storage modulus in 2,932% increments, and the well-designed TPU/ANF/Ti_(3)C_(2)T_(x) MXene(PAM-Cu) composite foams showed distinguished compressive cycle stability. Taking virtues of the highly ordered and elastic porous architectures, the PAM-Cu foams were utilized as piezoresistive sensor exhibiting board compressive interval of 0–344.5 kPa(50% strain) with good sensitivity at 0.46 kPa^(-1). Meanwhile,the PAM-Cu foams displayed remarkable EMI shielding effectiveness at 79.09 dB in X band. This work provides an ideal strategy to fabricate highly ordered TPU foams with outstanding elastic recovery and excellent EMI shielding performance, which can be used as a promising candidate in integration of satisfactory piezoresistive sensor and EMI shielding applications for human–machine interfaces.展开更多
Functional multiblock poly(ether-b-amide)(PEBA)copolymers,comprised of PA1212(polyamide 1212)as hard segments and Jeffamine ED-2003 as soft segments,were successfully prepared via two-step melt polycondensation withou...Functional multiblock poly(ether-b-amide)(PEBA)copolymers,comprised of PA1212(polyamide 1212)as hard segments and Jeffamine ED-2003 as soft segments,were successfully prepared via two-step melt polycondensation without any amidation catalyst.Here,using diamino-terminated poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide)(PPO-PEO-PPO),Jeffamine ED-2003,enhances the compatibility between polyamide oligomer and polyether,which is better than the traditional route using hydroxyl-terminated polyether.The chemical structure of multiblock PEBAs,as well as the microphase separated structure with crystalline phase of polyamide and polyether,were confirmed by heteronuclear multiple-bond correlation spectrum,heteronuclear multiple quantum correlation spectrum,Fourier transform infrared spectroscopy(FT-IR),differential scanning calorimetry and dynamic mechanical analysis.The hydrophilic PEBA copolymers showed water adsorption ranging from 87.3%to 17.1%depending on the polyether content,and specially showed moisture responsive behavior within seconds when exposed to moisture.The corresponding mechanism was studied using time-resolved attenuated total reflectance FT-IR spectroscopy in the molecular level and the water diffusion coefficient was estimated to be 1.07×10^(–8)cm^(2)∙s^(-1).Two-dimensional correlation FT-IR spectra analysis was performed to confirm that the interaction between water and polyether phase was in preference to that between water and polyamide matrix,and water molecule only forms hydrogen bond with the polyether segment.Due to the incorporation of PEO segments,the PEBAs have the surface resistivity varying from 5.6×10^(9)to 6.5×10^(10)Ω,which makes PEBA potential candidate as permanent antistatic agent.展开更多
The poly(epoxy-N-methylaniline)conductive organic carrier was used as the bonding phase of the low-temperature conductive silver paste.Then,this was mixed with different proportions of silver powder to prepare the low...The poly(epoxy-N-methylaniline)conductive organic carrier was used as the bonding phase of the low-temperature conductive silver paste.Then,this was mixed with different proportions of silver powder to prepare the low-temperature conductive silver paste.Afterwards,the effect of the conductive organic carrier on the properties of the low-temperature conductive silver paste was determined by IR,DMA and SEM.The results revealed that the prepared conductive paste has good conductivity,film-forming performance,printing performance,low-temperature curing performance,and anti-aging performance.When the mass percentage of the bonding phase/conductive phase was 40/60,the lowest volume resistivity of the conductive silver paste was 4.9×10^(−6)Ω⋅cm,and the conductivity was the best.展开更多
Flexible conductive fibers are essential for wearable electronics and smart electronic textiles.However,in complex operating conditions,conductive fibers will inevitably fracture or damage.Herein,we have developed an ...Flexible conductive fibers are essential for wearable electronics and smart electronic textiles.However,in complex operating conditions,conductive fibers will inevitably fracture or damage.Herein,we have developed an elastic conductive self-healable fiber(C-SHF),of which the electrical and mechanical properties can efficiently heal in a wide operating range,including room temperature,underwater,and low temperature.This advantage can be owed to the combination of reversible covalent imine bond and disulfide bond,as well as the instantaneous self-healing ability of liquid metal.The C-SHF,with stretchability,conductivity stability,and universal self-healing properties,can be used as an electrical signal transmission line at high strain and under different operating conditions.Besides,C-SHF was assembled into a double-layer capacitor structure to construct a self-healable sensor,which can effectively respond to pressure as a wearable motion detector.展开更多
基金the National Natural Science Foundation of China(No.51972162).
文摘Graphene-based thermally conductive composites have been proposed as effective thermal management materials for cooling high-power electronic devices.However,when flexible graphene nanosheets are assembled into macroscopic thermally conductive composites,capillary forces induce shrinkage of graphene nanosheets to form wrinkles during solution-based spontaneous drying,which greatly reduces the thermal conductivity of the composites.Herein,graphene nanosheets/aramid nanofiber(GNS/ANF)composite films with high thermal conductivity were prepared by in-plane stretching of GNS/ANF composite hydrogel networks with hydrogen bonds andπ-πinteractions.The in-plane mechanical stretching eliminates graphene nanosheets wrinkles by suppressing inward shrinkage due to capillary forces during drying and achieves a high in-plane orientation of graphene nanosheets,thereby creating a fast in-plane heat transfer channel.The composite films(GNS/ANF-60 wt%)with eliminated graphene nanosheets wrinkles showed a significant increase in thermal conductivity(146 W m^(−1)K^(−1))and tensile strength(207 MPa).The combination of these excellent properties enables the GNS/ANF composite films to be effectively used for cooling flexible LED chips and smartphones,showing promising applications in the thermal management of high-power electronic devices.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.523712475,2072415 and 62101352)Shenzhen Science and Technology Program(RCBS20210706092343016).
文摘Despite the growing demand for transparent conductive films in smart and wearable electronics for electromagnetic interference(EMI)shielding,achieving a flexible EMI shielding film,while maintaining a high transmittance remains a significant challenge.Herein,a flexible,transparent,and conductive copper(Cu)metal mesh film for EMI shielding is fabricated by self-forming crackle template method and electroplating technique.The Cu mesh film shows an ultra-low sheet resistance(0.18Ω□^(-1)),high transmittance(85.8%@550 nm),and ultra-high figure of merit(>13,000).It also has satisfactory stretchability and mechanical stability,with a resistance increases of only 1.3%after 1,000 bending cycles.As a stretchable heater(ε>30%),the saturation temperature of the film can reach over 110°C within 60 s at 1.00 V applied voltage.Moreover,the metal mesh film exhibits outstanding average EMI shielding effectiveness of 40.4 dB in the X-band at the thickness of 2.5μm.As a demonstration,it is used as a transparent window for shielding the wireless communication electromagnetic waves.Therefore,the flexible and transparent conductive Cu mesh film proposed in this work provides a promising candidate for the next-generation EMI shielding applications.
基金the National Natural Science Foundation of China(Nos.22209095 and 22238004).
文摘Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effectively addresses the aforementioned problems;however,the impact of its quality on lithium-ion transfer and structure durability is yet to be explored.Herein,the influence of an interface conductive network on ionic transport and mechanical stability under fast charging is explored for the first time.2D modeling simulation and Cryo-transmission electron microscopy precisely reveal the mitigation of interface polarization owing to a higher fraction of conductive inorganic species formation in bilayer solid electrolyte interphase is mainly responsible for a linear decrease in ionic diffusion energy barrier.Furthermore,atomic force microscopy and Raman shift exhibit substantial stress dissipation generated by a complete conductive network,which is critical to the linear reduction of electrode residual stress.This study provides insights into the rational design of optimized interface SiO-based anodes with reinforced fast-charging performance.
基金research conducted with the financial support of Science Foundation Ireland under the SFI Research Infrastructure Programme (21/RI/9831)the funding provided by the Irish Research Council through the Irish Research Council Enterprise Partnership Scheme with Johnson and Johnson (EPSPG/2020/78)
文摘Tissue engineering(TE)continues to be widely explored as a potential solution to meet critical clinical needs for diseased tissue replacement and tissue regeneration.In this study,we developed a poly(2-hydroxyethyl methacrylate-co-methacrylic acid)(pHEMA-co-MAA)based hydrogel loaded with newly synthesized conductive poly(3,4-ethylene-dioxythiophene)(PEDOT)and polypyrrole(PPy)nanoparticles(NPs),and subsequently processed these hydrogels into tissue engineered constructs via three-dimensional(3D)printing.The presence of the NPs was critical as they altered the rheological properties during printing.However,all samples exhibited suitable shear thinning properties,allowing for the development of an optimized processing window for 3D printing.Samples were 3D printed into pre-determined disk-shaped configurations of 2 and 10 mm in height and diameter,respectively.We observed that the NPs disrupted the gel crosslinking efficiencies,leading to shorter degradation times and compressive mechanical properties ranging between 450 and 550 kPa.The conductivity of the printed hydrogels increased along with the NP concentration to(5.10±0.37)×10^(−7)S/cm.In vitro studies with cortical astrocyte cell cultures demonstrated that exposure to the pHEMA-co-MAA NP hydrogels yielded high cellular viability and proliferation rates.Finally,hydrogel antimicrobial studies with staphylococcus epidermidis bacteria revealed that the developed hydrogels affected bacterial growth.Taken together,these materials show promise for various TE strategies.
文摘Carbon was used as electronic conductive agent, and metasilicic acid lithium (Li<sub>2</sub>SiO<sub>3</sub>) as ionic conductive agent, the two factors were investigated cooperatively. We evaluated their effect by using spherical spinel LiMn<sub>2</sub>O<sub>4</sub> which prepared ourselves as cathode material. Then Li<sub>2</sub>SiO<sub><sub></sub>3</sub>/carbon surface coating on LiMn<sub><sub></sub>2</sub>O<sub>4</sub> (LMO/C/LSO) which Li<sub><sub></sub>2</sub>SiO<sub><sub></sub>3</sub> inside and carbon/Li<sub><sub></sub>2</sub>SiO<sub><sub></sub>3</sub> coated LiMn<sub><sub></sub>2</sub>O<sub><sub></sub>4</sub> (LMO/LSO/C) were prepared, All of materials were characterized by X-ray diffraction (XRD) and electrochemical test;spherical LiMn<sub></sub>2O<sub></sub>4 was characterized by scanning electron microscopy (SEM);and coated materials were characterized by transmission electron microscopy (TEM). While uncoated spinel LiMn<sub><sub></sub>2</sub>O<sub><sub></sub>4</sub> maintained 72% of capacity in 60 cycles by the rate of 0.2C, and LMO/LSO/C showed the best electrochemical performance, 89% of the initial capacity remained after 75 cycles at 0.2C. Furthermore, the rate performance of LMO/LSO/C also improved obviously, about 30 mAh·g<sup>-1</sup> of capacity attained at the rate of 5C, higher than LMO/C/LSO and bare LiMn<sub><sub></sub>2</sub>O<sub><sub></sub>4</sub>.
文摘The advent of the 5G era has stimulated the rapid development of high power electronics with dense integration.Three-dimensional(3D)thermally conductive networks,possessing high thermal and electrical conductivities and many different structures,are regarded as key materials to improve the performance of electronic devices.We provide a critical overview of carbonbased 3D thermally conductive networks,emphasizing their preparation-structure-property relationships and their applications in different scenarios.A detailed discussion of the microscopic principles of thermal conductivity is provided,which is crucial for increasing it.This is followed by an in-depth account of the construction of 3D networks using different carbon materials,such as graphene,carbon foam,and carbon nanotubes.Techniques for the assembly of two-dimensional graphene into 3D networks and their effects on thermal conductivity are emphasized.Finally,the existing challenges and future prospects for 3D carbon-based thermally conductive networks are discussed.
基金The authors would like to appreciate the financial support extended for this academic work by the Beijing Natural Science Foundation(Grants 2172053,2232066)the Open Project Foundation of State Key Laboratory of Solid Lubrication(Grant LSL-2212).
文摘This study prepared four types of ionic liquid-modified polypyrrole(IL-modified PPy)as conductive additives and investigated their tribological performance and conductivity in polytetrafluoroethylene lubricating grease.The results indicated that IL-modified PPy effectively enhanced the anti-wear performance and conductivity of the base grease.Among the additives,1-octyl-3-methylimidazolium tetrafluoroborate([OMIm][BF4])modified PPy showed superior performance compared to the other three additives,with the best effect observed at a mass fraction of 0.5%.X-ray photoelectron spectroscopy analysis revealed that IL-modified PPy forms a stable friction chemical film during the friction process,effectively enhancing the lubrication performance and conductivity of the base grease.This indicates broad potential applications in the field of conductive lubrication.
基金supported by the Enhancement of Performance and Production Technology of Lithium-based Next-generation Rechargeable Battery(project number 20012371)from the Ministry of Trade,Industry and Energy(MOTIE)of Koreasupported by project number KS2322-20(A Study on the Convergence Materials for Off-Grid Energy Conversion/Storage Integrated Devices)of the Korea Research Institute of Chemical Technology(KRICT).
文摘Sulfide-based inorganic solid electrolytes are promising materials for high-performance safe solid-state batteries.The high ion conductivity,mechanical characteristics,and good processability of sulfide-based inorganic solid electrolytes are desirable properties for realizing high-performance safe solid-state batteries by replacing conventional liquid electrolytes.However,the low chemical and electrochemical stability of sulfide-based inorganic solid electrolytes hinder the commercialization of sulfide-based safe solid-state batteries.Particularly,the instability of sulfide-based inorganic solid electrolytes is intensified in the cathode,comprising various materials.In this study,carbonate-based ionic conductive polymers are introduced to the cathode to protect cathode materials and suppress the reactivity of sulfide electrolytes.Several instruments,including electrochemical spectroscopy,X-ray photoelectron spectroscopy,and scanning electron microscopy,confirm the chemical and electrochemical stability of the polymer electrolytes in contact with sulfide-based inorganic solid electrolytes.Sulfide-based solid-state cells show stable electrochemical performance over 100 cycles when the ionic conductive polymers were applied to the cathode.
基金the National Natural Science Foundation of China(Nos.52272046,52090030,52090031,52122301,51973191)the Natural Science Foundation of Zhejiang Province(LR23E020003)+4 种基金Shanxi-Zheda Institute of New Materials and Chemical Engineering(2021SZ-FR004,2022SZ-TD011,2022SZ-TD012,2022SZ-TD014)Hundred Talents Program of Zhejiang University(188020*194231701/113,112300+1944223R3/003,112300+1944223R3/004)the Fundamental Research Funds for the Central Universities(Nos.226-2023-00023,226-2023-00082,2021FZZX001-17,K20200060)National Key R&D Program of China(NO.2022YFA1205300,NO.2022YFA1205301,NO.2020YFF0204400,NO.2022YFF0609801)“Pioneer”and“Leading Goose”R&D Program of Zhejiang 2023C01190.
文摘Highly thermally conductive graphitic film(GF)materials have become a competitive solution for the thermal management of high-power electronic devices.However,their catastrophic structural failure under extreme alternating thermal/cold shock poses a significant challenge to reliability and safety.Here,we present the first investigation into the structural failure mechanism of GF during cyclic liquid nitrogen shocks(LNS),which reveals a bubbling process characterized by“permeation-diffusion-deformation”phenomenon.To overcome this long-standing structural weakness,a novel metal-nanoarmor strategy is proposed to construct a Cu-modified graphitic film(GF@Cu)with seamless heterointerface.This well-designed interface ensures superior structural stability for GF@Cu after hundreds of LNS cycles from 77 to 300 K.Moreover,GF@Cu maintains high thermal conductivity up to 1088 W m^(−1)K^(−1)with degradation of less than 5%even after 150 LNS cycles,superior to that of pure GF(50%degradation).Our work not only offers an opportunity to improve the robustness of graphitic films by the rational structural design but also facilitates the applications of thermally conductive carbon-based materials for future extreme thermal management in complex aerospace electronics.
基金financially supported by the National Natural Science Foundation of China(No.52072322)the Department of Science and Technology of Sichuan Province,China(Nos.23GJHZ0147,23ZDYF0262,2022YFG0294,and 2019-GH02-00052-HZ)。
文摘Electrochemical lithium extraction from salt lakes is an effective strategy for obtaining lithium at a low cost.Nevertheless,the elevated Mg:Li ratio and the presence of numerous coexisting ions in salt lake brines give rise to challenges,such as prolonged lithium extraction periods,diminished lithium extraction efficiency,and considerable environmental pollution.In this work,Li FePO4(LFP)served as the electrode material for electrochemical lithium extraction.The conductive network in the LFP electrode was optimized by adjusting the type of conductive agent.This approach resulted in high lithium extraction efficiency and extended cycle life.When the single conductive agent of acetylene black(AB)or multiwalled carbon nanotubes(MWCNTs)was replaced with the mixed conductive agent of AB/MWCNTs,the average diffusion coefficient of Li+in the electrode increased from 2.35×10^(-9)or 1.77×10^(-9)to 4.21×10^(-9)cm^(2)·s^(-1).At the current density of 20 mA·g^(-1),the average lithium extraction capacity per gram of LFP electrode increased from 30.36 mg with the single conductive agent(AB)to 35.62 mg with the mixed conductive agent(AB/MWCNTs).When the mixed conductive agent was used,the capacity retention of the electrode after 30 cycles reached 82.9%,which was considerably higher than the capacity retention of 65.8%obtained when the single AB was utilized.Meanwhile,the electrode with mixed conductive agent of AB/MWCNTs provided good cycling performance.When the conductive agent content decreased or the loading capacity increased,the electrode containing the mixed conductive agent continued to show excellent electrochemical performance.Furthermore,a self-designed,highly efficient,continuous lithium extraction device was constructed.The electrode utilizing the AB/MWCNT mixed conductive agent maintained excellent adsorption capacity and cycling performance in this device.This work provides a new perspective for the electrochemical extraction of lithium using LFP electrodes.
基金supported by the National Key Research and Development Program of China,China(2019YFA0705102)the National Natural Science Foundation of China,China(22179144,22005332)。
文摘Thick electrodes can increase incorporation of active electrode materials by diminishing the proportion of inactive constituents,improving the overall energy density of batteries.However,thick electrodes fabricated using the conventional slurry casting approach frequently exhibit an exacerbated accumulation of carbon additives and binders on their surfaces,invariably leading to compromised electrochemical properties.In this study,we introduce a designed conductive agent/binder composite synthesized from carbon nanotube and polytetrafluoroethylene.This agent/binder composite facilitates production of dry-process-prepared ultra-thick electrodes endowed with a three-dimensional and uniformly distributed percolative architecture,ensuring superior electronic conductivity and remarkable mechanical resilience.Using this approach,ultra-thick LiCoO_(2)(LCO) electrodes demonstrated superior cycling performance and rate capabilities,registering an impressive loading capacity of up to 101.4 mg/cm^(2),signifying a 242% increase in battery energy density.In another analytical endeavor,time-of-flight secondary ion mass spectroscopy was used to clarify the distribution of cathode electrolyte interphase(CEI) in cycled LCO electrodes.The results provide unprecedented evidence explaining the intricate correlation between CEI generation and carbon distribution,highlighting the intrinsic advantages of the proposed dry-process approach in fine-tu ning the CEI,with excellent cycling performance in batteries equipped with ultra-thick electrodes.
基金the support of the Joint Funds of the Natural Science Foundation of Hubei Province(2022CFD130)the Technology Innovation Project of Hubei Province(Key Program,No.2023BEB010)+1 种基金the Key Research and Development Program of Hubei Province(No.2021BGD015)the Knowledge Innovation Project of Wuhan(No.2022010801010259).
文摘An experimental investigation into the thermal conductivity of CF-SiC two-phase composite asphalt concrete is presented.The main objective of this study was to verify the possibility of using SiC powder instead of mineral powder as the thermal conductive filler to prepare a new type of asphalt concrete and improve the efficiency of electrothermal snow and ice melting systems accordingly.The thermal conductivity of asphalt concrete prepared with different thermally conductive fillers was tested by a transient plane source method,and the related performances were measured.Then the temperature rise rate and surface temperature were studied through field heating tests.Finally,the actual ice melting efficiency of the thermally conductive asphalt concrete was evaluated using an effective electrothermal system.As shown by the experimental results,the composite made of SiC powder and carbon fiber has a high thermal conductivity.When SiC replaces mineral powder,the thermal conductivity of the asphalt mixture increases first and then decreases with the increase of carbon fiber content.In the present study,in particular,the thermal conductivity attained a peak when the carbon fiber content was 0.2%of the aggregate mass.
基金the Fundamental Research Funds for the Central Universities(Grant No.30920041102)National Natural Science Foundation of China(Grant No.11802134).
文摘The arc ignition system based on charring polymers has advantages of simple structure,low ignition power consumption and multiple ignitions,which bringing it broadly application prospect in hybrid propulsion system of micro/nano satellite.However,charring polymers alone need a relatively high input voltage to achieve pyrolysis and ignition,which increases the burden and cost of the power system of micro/nano satellite in practical application.Adding conductive substance into charring polymers can effectively decrease the conducting voltage which can realize low voltage and low power consumption repeated ignition of arc ignition system.In this paper,a charring conductive polymer ignition grain with a cavity geometry in precombustion chamber,which is composed of PLA and multiwall carbon nanotubes(MWCNT)was proposed.The detailed ignition processes were analyzed and two different ignition mechanisms in the cavity of charring conductive polymers were revealed.The ignition characteristics of charring conductive polymers were also investigated at different input voltages,ignition grain structures,ignition locations and injection schemes in a visual ignition combustor.The results demonstrated that the ignition delay and external energy required for ignition were inversely correlated with the voltages applied to ignition grain.Moreover,the incremental depth of cavity shortened the ignition delay and external energy required for ignition while accelerated the propagation of flame.As the depth of cavity increased from 2 to 6 mm(at 50 V),the time of flame propagating out of ignition grain changed from 235.6 to 108 ms,and values of mean ignition delay time and mean external energy required for ignition decreased from 462.8 to 320 ms and 16.2 to 10.75 J,respectively.The rear side of the cavity was the ideal ignition position which had a shorter ignition delay and a faster flame propagation speed in comparison to other ignition positions.Compared to direct injection scheme,swirling injection provided a more favorable flow field environment in the cavity,which was beneficial to ignition and initial flame propagation,but the ignition position needed to be away from the outlet of swirling injector.At last,the repeated ignition characteristic of charring conductive polymers was also investigated.The ignition delay time and external energy required for ignition decreased with repeated ignition times but the variation was decreasing gradually.
文摘Light-colored antistatic polyacrylonitrile(PAN)composite fiber was successfully prepared via a facile wet-spinning process using ATZO@TiO_(2)whiskers as conductive fillers.This kind of low-cost fiber meets the requirements of light-colored and antistatic ability,which is quite suitable for mass production of dust-proof and safety workwear.The conductive whiskers are well dispersed in the fiber and form a continuous conductive pathway,which makes the fiber to possess a long conductive ability.The lowest resistance of antistatic ATZO@TiO_(2)/PAN fiber was 2.1×10^(7)Ω·cm.
基金supported by the National Natural Science Foundation of China(Nos.51973142,52033005,52003169).
文摘Highly conductive polymer composites(CPCs) with excellent mechanical flexibility are ideal materials for designing excellent electromagnetic interference(EMI) shielding materials,which can be used for the electromagnetic interference protection of flexible electronic devices.It is extremely urgent to fabricate ultra-strong EMI shielding CPCs with efficient conductive networks.In this paper,a novel silver-plated polylactide short fiber(Ag@PL ASF,AAF) was fabricated and was integrated with carbon nanotubes(CNT) to construct a multi-scale conductive network in polydimethylsiloxane(PDMS) matrix.The multi-scale conductive network endowed the flexible PDMS/AAF/CNT composite with excellent electrical conductivity of 440 S m-1and ultra-strong EMI shielding effectiveness(EMI SE) of up to 113 dB,containing only 5.0 vol% of AAF and 3.0 vol% of CNT(11.1wt% conductive filler content).Due to its excellent flexibility,the composite still showed 94% and 90% retention rates of EMI SE even after subjected to a simulated aging strategy(60℃ for 7 days) and 10,000 bending-releasing cycles.This strategy provides an important guidance for designing excellent EMI shielding materials to protect the workspace,environment and sensitive circuits against radiation for flexible electronic devices.
基金financially National Natural Science Foundation of China(51877132)Joint Funds of National Natural Science Foundation of China(U19A20105)the Program of Shanghai Academic Research Leader(No.21XD1401600)。
文摘Thermal management has become a crucial problem for high-power-density equipment and devices.Phase change materials(PCMs)have great prospects in thermal management applications because of their large capacity of heat storage and isothermal behavior during phase transition.However,low intrinsic thermal conductivity,ease of leakage,and lack of flexibility severely limit their applications.Solving one of these problems often comes at the expense of other performance of the PCMs.In this work,we report core–sheath structured phase change nanocomposites(PCNs)with an aligned and interconnected boron nitride nanosheet network by combining coaxial electrospinning,electrostatic spraying,and hot-pressing.The advanced PCN films exhibit an ultrahigh thermal conductivity of 28.3 W m^(-1)K^(-1)at a low BNNS loading(i.e.,32 wt%),which thereby endows the PCNs with high enthalpy(>101 J g^(-1)),outstanding ductility(>40%)and improved fire retardancy.Therefore,our core–sheath strategies successfully balance the trade-off between thermal conductivity,flexibility,and phase change enthalpy of PCMs.Further,the PCNs provide powerful cooling solutions on 5G base station chips and thermoelectric generators,displaying promising thermal management applications on high-power-density equipment and thermoelectric conversion devices.
基金financially sponsored by the Science and Technology Commission of Shanghai Municipality (20230742300 and 18595800700)Key Laboratory of Resource Chemistry, Ministry of Education (KLRC_ME2103)the project of “joint assignment” in Shanghai University led by Prof. Tongyue Gao from School of Mechatronic Engineering and Automation。
文摘Highly ordered and uniformly porous structure of conductive foams is a vital issue for various functional purposes such as piezoresistive sensing and electromagnetic interference(EMI) shielding. With the aids of Kevlar polyanionic chains, thermoplastic polyurethane(TPU) foams reinforced by aramid nanofibers(ANF) with adjustable pore-size distribution were successfully obtained via a nonsolvent-induced phase separation. In this regard, the most outstanding result is the in situ formation of ANF in TPU foams after protonation of Kevlar polyanion during the NIPS process. Furthermore, in situ growth of copper nanoparticles(Cu NPs) on TPU/ANF foams was performed according to the electroless deposition by using the tiny amount of pre-blended Ti_(3)C_(2)T_(x) MXene as reducing agents. Particularly, the existence of Cu NPs layers significantly promoted the storage modulus in 2,932% increments, and the well-designed TPU/ANF/Ti_(3)C_(2)T_(x) MXene(PAM-Cu) composite foams showed distinguished compressive cycle stability. Taking virtues of the highly ordered and elastic porous architectures, the PAM-Cu foams were utilized as piezoresistive sensor exhibiting board compressive interval of 0–344.5 kPa(50% strain) with good sensitivity at 0.46 kPa^(-1). Meanwhile,the PAM-Cu foams displayed remarkable EMI shielding effectiveness at 79.09 dB in X band. This work provides an ideal strategy to fabricate highly ordered TPU foams with outstanding elastic recovery and excellent EMI shielding performance, which can be used as a promising candidate in integration of satisfactory piezoresistive sensor and EMI shielding applications for human–machine interfaces.
基金financially supported by the National Natural Science Foundation of China (21978089 and 21878256)the Fundamental Research Funds for the Central Universities (22221818010)+1 种基金the 111 Project (B20031)the Program of Shanghai Subject Chief Scientist (21XD1433000)
文摘Functional multiblock poly(ether-b-amide)(PEBA)copolymers,comprised of PA1212(polyamide 1212)as hard segments and Jeffamine ED-2003 as soft segments,were successfully prepared via two-step melt polycondensation without any amidation catalyst.Here,using diamino-terminated poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide)(PPO-PEO-PPO),Jeffamine ED-2003,enhances the compatibility between polyamide oligomer and polyether,which is better than the traditional route using hydroxyl-terminated polyether.The chemical structure of multiblock PEBAs,as well as the microphase separated structure with crystalline phase of polyamide and polyether,were confirmed by heteronuclear multiple-bond correlation spectrum,heteronuclear multiple quantum correlation spectrum,Fourier transform infrared spectroscopy(FT-IR),differential scanning calorimetry and dynamic mechanical analysis.The hydrophilic PEBA copolymers showed water adsorption ranging from 87.3%to 17.1%depending on the polyether content,and specially showed moisture responsive behavior within seconds when exposed to moisture.The corresponding mechanism was studied using time-resolved attenuated total reflectance FT-IR spectroscopy in the molecular level and the water diffusion coefficient was estimated to be 1.07×10^(–8)cm^(2)∙s^(-1).Two-dimensional correlation FT-IR spectra analysis was performed to confirm that the interaction between water and polyether phase was in preference to that between water and polyamide matrix,and water molecule only forms hydrogen bond with the polyether segment.Due to the incorporation of PEO segments,the PEBAs have the surface resistivity varying from 5.6×10^(9)to 6.5×10^(10)Ω,which makes PEBA potential candidate as permanent antistatic agent.
基金fund for this work was provided by the“Research on Key Technologies of Photosensitive Conductive Silver Paste Based on Domestic Circuit Protection Micro Chip Components”(Project No.BE2020008 and Supporting Author:Chen P).
文摘The poly(epoxy-N-methylaniline)conductive organic carrier was used as the bonding phase of the low-temperature conductive silver paste.Then,this was mixed with different proportions of silver powder to prepare the low-temperature conductive silver paste.Afterwards,the effect of the conductive organic carrier on the properties of the low-temperature conductive silver paste was determined by IR,DMA and SEM.The results revealed that the prepared conductive paste has good conductivity,film-forming performance,printing performance,low-temperature curing performance,and anti-aging performance.When the mass percentage of the bonding phase/conductive phase was 40/60,the lowest volume resistivity of the conductive silver paste was 4.9×10^(−6)Ω⋅cm,and the conductivity was the best.
文摘Flexible conductive fibers are essential for wearable electronics and smart electronic textiles.However,in complex operating conditions,conductive fibers will inevitably fracture or damage.Herein,we have developed an elastic conductive self-healable fiber(C-SHF),of which the electrical and mechanical properties can efficiently heal in a wide operating range,including room temperature,underwater,and low temperature.This advantage can be owed to the combination of reversible covalent imine bond and disulfide bond,as well as the instantaneous self-healing ability of liquid metal.The C-SHF,with stretchability,conductivity stability,and universal self-healing properties,can be used as an electrical signal transmission line at high strain and under different operating conditions.Besides,C-SHF was assembled into a double-layer capacitor structure to construct a self-healable sensor,which can effectively respond to pressure as a wearable motion detector.