期刊文献+
共找到59篇文章
< 1 2 3 >
每页显示 20 50 100
High energy density in ultra-thick and flexible electrodes enabled by designed conductive agent/binder composite
1
作者 Xiaoyu Shen Hailong Yu +6 位作者 Liubin Ben Wenwu Zhao Qiyu Wang Guanjun Cen Ronghan Qiao Yida Wu Xuejie Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期133-143,I0005,共12页
Thick electrodes can increase incorporation of active electrode materials by diminishing the proportion of inactive constituents,improving the overall energy density of batteries.However,thick electrodes fabricated us... Thick electrodes can increase incorporation of active electrode materials by diminishing the proportion of inactive constituents,improving the overall energy density of batteries.However,thick electrodes fabricated using the conventional slurry casting approach frequently exhibit an exacerbated accumulation of carbon additives and binders on their surfaces,invariably leading to compromised electrochemical properties.In this study,we introduce a designed conductive agent/binder composite synthesized from carbon nanotube and polytetrafluoroethylene.This agent/binder composite facilitates production of dry-process-prepared ultra-thick electrodes endowed with a three-dimensional and uniformly distributed percolative architecture,ensuring superior electronic conductivity and remarkable mechanical resilience.Using this approach,ultra-thick LiCoO_(2)(LCO) electrodes demonstrated superior cycling performance and rate capabilities,registering an impressive loading capacity of up to 101.4 mg/cm^(2),signifying a 242% increase in battery energy density.In another analytical endeavor,time-of-flight secondary ion mass spectroscopy was used to clarify the distribution of cathode electrolyte interphase(CEI) in cycled LCO electrodes.The results provide unprecedented evidence explaining the intricate correlation between CEI generation and carbon distribution,highlighting the intrinsic advantages of the proposed dry-process approach in fine-tu ning the CEI,with excellent cycling performance in batteries equipped with ultra-thick electrodes. 展开更多
关键词 Conductive agent/binder composite Dry process Ultra-thick electrodes High energy density CEI reconstruction ToF-SIMS
下载PDF
Janus(BNNS/ANF)-(AgNWs/ANF)thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances 被引量:28
2
作者 Yixin Han Kunpeng Ruan Junwei Gu 《Nano Research》 SCIE EI CSCD 2022年第5期4747-4755,共9页
Highly thermal conductivity materials with excellent electromagnetic interference shielding and Joule heating performances are ideal for thermal management in the next generation of communication industry,artificial i... Highly thermal conductivity materials with excellent electromagnetic interference shielding and Joule heating performances are ideal for thermal management in the next generation of communication industry,artificial intelligence and wearable electronics.In this work,silver nanowires(AgNWs)are prepared using silver nitrate as the silver source and ethylene glycol as the solvent and reducing agent,and boron nitride(BN)is performed to prepare BN nanosheets(BNNS)with the help of isopropyl alcohol and ultrasonication-assisted peeling method,which are compounded with aramid nanofibers(ANF)prepared by chemical dissociation,respectively,and the(BNNS/ANF)-(AgNWs/ANF)thermal conductivity and electromagnetic interference shielding composite films with Janus structures are prepared by the"vacuum-assisted filtration and hot-pressing"method.Janus(BNNS/ANF)-(AgNWs/ANF)composite films exhibit"one side insulating,one side conducting"performance,the surface resistivity of the BNNS/ANF surface is 4.7×10^(13) Ω,while the conductivity of the AgNWs/ANF surface is 5,275 S/cm.And Janus(BNNS/ANF)-(AgNWs/ANF)composite film with thickness of 95 pm has a high in-plane thermal conductivity coefficient of 8.12 W/(m·K)and superior electromagnetic interference shielding effectiveness of 70 dB.The obtained composite film also has excellent tensile strength of 122.9 MPa and tensile modulus and 2.7 GPa.It also has good temperature-voltage response characteristics(high Joule heating temperature at low supply voltage(5 V,215.0℃),fast response time(10 s)),excellent electrical stability and reliability(stable and constant real-time relative resistance under up to 300 cycles and 1,500 s of tensile-bending fatigue work tests). 展开更多
关键词 thermal conductivity composite film Janus structure aramid nanofibers electromagnetic interference shielding performance Joule heating
原文传递
Breaking Through Bottlenecks for Thermally Conductive Polymer Composites:A Perspective for Intrinsic Thermal Conductivity,Interfacial Thermal Resistance and Theoretics 被引量:19
3
作者 Junwei Gu Kunpeng Ruan 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第7期118-126,共9页
Rapid development of energy,electrical and electronic technologies has put forward higher requirements for the thermal conductivities of polymers and their composites.However,the thermal conductivity coefficient(λ)va... Rapid development of energy,electrical and electronic technologies has put forward higher requirements for the thermal conductivities of polymers and their composites.However,the thermal conductivity coefficient(λ)values of prepared thermally conductive polymer composites are still difficult to achieve expectations,which has become the bottleneck in the fields of thermally conductive polymer composites.Aimed at that,based on the accumulation of the previous research works by related researchers and our research group,this paper proposes three possible directions for breaking through the bottlenecks:(1)preparing and synthesizing intrinsically thermally conductive polymers,(2)reducing the interfacial thermal resistance in thermally conductive polymer composites,and(3)establishing suitable thermal conduction models and studying inner thermal conduction mechanism to guide experimental optimization.Also,the future development trends of the three above-mentioned directions are foreseen,hoping to provide certain basis and guidance for the preparation,researches and development of thermally conductive polymers and their composites. 展开更多
关键词 Thermally conductive polymer composites Intrinsic thermal conductivity Interfacial thermal resistance Thermal conduction models Thermal conduction mechanisms
下载PDF
Flexible Polydimethylsiloxane Composite with Multi-Scale Conductive Network for Ultra-Strong Electromagnetic Interference Protection 被引量:7
4
作者 Jie Li He Sun +5 位作者 Shuang-Qin Yi Kang-Kang Zou Dan Zhang Gan-Ji Zhong Ding-Xiang Yan Zhong-Ming Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第1期293-306,共14页
Highly conductive polymer composites(CPCs) with excellent mechanical flexibility are ideal materials for designing excellent electromagnetic interference(EMI) shielding materials,which can be used for the electromagne... Highly conductive polymer composites(CPCs) with excellent mechanical flexibility are ideal materials for designing excellent electromagnetic interference(EMI) shielding materials,which can be used for the electromagnetic interference protection of flexible electronic devices.It is extremely urgent to fabricate ultra-strong EMI shielding CPCs with efficient conductive networks.In this paper,a novel silver-plated polylactide short fiber(Ag@PL ASF,AAF) was fabricated and was integrated with carbon nanotubes(CNT) to construct a multi-scale conductive network in polydimethylsiloxane(PDMS) matrix.The multi-scale conductive network endowed the flexible PDMS/AAF/CNT composite with excellent electrical conductivity of 440 S m-1and ultra-strong EMI shielding effectiveness(EMI SE) of up to 113 dB,containing only 5.0 vol% of AAF and 3.0 vol% of CNT(11.1wt% conductive filler content).Due to its excellent flexibility,the composite still showed 94% and 90% retention rates of EMI SE even after subjected to a simulated aging strategy(60℃ for 7 days) and 10,000 bending-releasing cycles.This strategy provides an important guidance for designing excellent EMI shielding materials to protect the workspace,environment and sensitive circuits against radiation for flexible electronic devices. 展开更多
关键词 Flexible conductive polymer composites Silver-plated polylactide short fiber Carbon nanotube Electromagnetic interference shielding Multi-scale conductive network
下载PDF
Piezoresistive behavior of elastomer composites with segregated network of carbon nanostructures and alumina
5
作者 Chun-Yan Tang Lei Liu +3 位作者 Kai Ke Bo Yin Ming-Bo Yang Wei Yang 《Nano Materials Science》 EI CAS CSCD 2023年第3期312-318,共7页
Electrically conductive elastomer composites(CECs)with segregated networks of conductive nanofillers show high potential in stretchable strain sensors due to balanced mechanical and electrical properties,yet the sensi... Electrically conductive elastomer composites(CECs)with segregated networks of conductive nanofillers show high potential in stretchable strain sensors due to balanced mechanical and electrical properties,yet the sensitivity at low strain is generally insufficient for practical application.Herein,we report an easy and effective way to improve the resistive response to low strain for CECs with segregated network structure via adding stiff alumina into carbon nanostructures(CNS).The CEC containing 0.7 wt%CNS and 5 wt%Al_(2)O_(3) almost sustains the same elasticity(elongation at break of~900%)and conductivity(0.8 S/m)as the control,while the piezoresistive sensitivity is significantly improved.Thermoplastic polyurethane(TPU)composites with a segregated network of hybrid nanofillers(CNS and Al_(2)O_(3))show much higher strain sensitivity(Gauge factor,GF-566)at low strain(45%strain)due to a local stress concentration effect,this sensitivity is superior to that of TPU/CNS composites(GF-11).Such a local stress concentration effect depends on alumina content and its distribution at the TPU particle interface.In addition,CECs with hybrid fillers show better reproducibility in cyclic piezoresistive behavior testing than the control.This work offers an easy method for fabricating CECs with a segregated filler network offering stretchable strain sensors with a high strain sensitivity. 展开更多
关键词 Thermoplastic polyurethane Carbon nanostructures ALUMINA Conductive elastomer composites Stretchable strain sensor
下载PDF
Wearable and stretchable conductive polymer composites for strain sensors:How to design a superior one?
6
作者 Liwei Lin Sumin Park +6 位作者 Yuri Kim Minjun Bae Jeongyeon Lee Wang Zhang Jiefeng Gao Sun Ha Paek Yuanzhe Piao 《Nano Materials Science》 EI CAS CSCD 2023年第4期392-403,共12页
Wearable and stretchable strain sensors have potential values in the fields of human motion and health monitoring,flexible electronics,and soft robotic skin.The wearable and stretchable strain sensors can be directly ... Wearable and stretchable strain sensors have potential values in the fields of human motion and health monitoring,flexible electronics,and soft robotic skin.The wearable and stretchable strain sensors can be directly attached to human skin,providing visualized detection for human motions and personal healthcare.Conductive polymer composites(CPC)composed of conductive fillers and flexible polymers have the advantages of high stretchability,good flexibility,superior durability,which can be used to prepare flexible strain sensors with large working strain and outstanding sensitivity.This review has put forward a comprehensive summary on the fabrication methods,advanced mechanisms and strain sensing abilities of CPC strain sensors reported in recent years,especially the sensors with superior performance.Finally,the structural design,bionic function,integration technology and further application of CPC strain sensors are prospected. 展开更多
关键词 Wearable strain sensors Conductive polymer composites MECHANISM Sensing performance
下载PDF
Highly Elastic,Bioresorbable Polymeric Materials for Stretchable,Transient Electronic Systems
7
作者 Jeong‑Woong Shin Dong‑Je Kim +12 位作者 Tae‑Min Jang Won Bae Han Joong Hoon Lee Gwan‑Jin Ko Seung Min Yang Kaveti Rajaram Sungkeun Han Heeseok Kang Jun Hyeon Lim Chan‑Hwi Eom Amay J.Bandodkar Hanul Min Suk‑Won Hwang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期1-13,共13页
Substrates or encapsulants in soft and stretchable formats are key components for transient,bioresorbable electronic systems;however,elastomeric polymers with desired mechanical and biochemical properties are very lim... Substrates or encapsulants in soft and stretchable formats are key components for transient,bioresorbable electronic systems;however,elastomeric polymers with desired mechanical and biochemical properties are very limited compared to nontransient counterparts.Here,we introduce a bioresorbable elastomer,poly(glycolide-co-ε-caprolactone)(PGCL),that contains excellent material properties including high elongation-at-break(<1300%),resilience and toughness,and tunable dissolution behaviors.Exploitation of PGCLs as polymer matrices,in combination with conducing polymers,yields stretchable,conductive composites for degradable interconnects,sensors,and actuators,which can reliably function under external strains.Integration of device components with wireless modules demonstrates elastic,transient electronic suture system with on-demand drug delivery for rapid recovery of postsurgical wounds in soft,time-dynamic tissues. 展开更多
关键词 Biodegradable elastomer Conductive polymer composites Biomedical device Transient electronics
下载PDF
Effects of Al particles and thin layer on thermal expansion and conductivity of Al-Y_2Mo_3O_(12) cermets 被引量:1
8
作者 刘献省 葛向红 +1 位作者 梁二军 张伟风 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第11期498-502,共5页
Low thermal expansion composites are difficult to obtain by using Al with larger positive thermal expansion coefficient(TEC) and the materials with smaller negative TECs. In this investigation, Y2Mo3O12 with larger ... Low thermal expansion composites are difficult to obtain by using Al with larger positive thermal expansion coefficient(TEC) and the materials with smaller negative TECs. In this investigation, Y2Mo3O12 with larger negative TEC is used to combine with Al to obtain a low thermal expansion composite with high conductivity. The TEC of Al is reduced by 19%for a ratio Al:Y2Mo3O12 of 0.3118. When the mass ratio of Al:Y2Mo3O12 increases to 2.0000, the conductivity of the composite increases so much that a transformation from capacitance to pure resistance appears. The results suggest that Y2Mo3O12 plays a dominant role in the composite for low content of Al(presenting isolate particles), while the content of Al increases enough to contact each other, the composite presents mainly the property of Al. For the effect of high content Al, it is considered that Al is squeezed out of the cermets during the uniaxial pressure process to form a thin layer on the surface. 展开更多
关键词 negative thermal expansion low thermal expansion conductivity composite
下载PDF
A Novel Technique for Preparation of Electrically Conductive ABS/Cu Polymeric Gradient Composites 被引量:3
9
作者 宦春花 温变英 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第5期1003-1007,共5页
A novel technique for preparing functionally gradient electrically conductive polymeric composites was developed by using of solution casting technique on the principle of Stokes' law. Acrylonitrile- butadiene-styren... A novel technique for preparing functionally gradient electrically conductive polymeric composites was developed by using of solution casting technique on the principle of Stokes' law. Acrylonitrile- butadiene-styrene/Cu (ABS/Cu) gradient polymeric composites were prepared successfully using this technique. The gradient structures, electrically conductive performance and mechanical properties of the ABS/Cu composites were investigated. Optical microscope observation shows that the gradient distribution of Cu particles in ABS matrix was formed along their thickness-direction. The electrically conductive testing results indicate that the order of magnitude of surface resistivity was kept in 10^15 Ω at ABS rich side, while that declined to 10^5 Ω at Cu particles rich side, and the percolation threshold was in the range of 2.82 vo1%- 4.74 vol% Cu content at Cu particles rich side. Mechanical test shows that the tensile strength reduced insignificantly as the content of Cu increases owing to the gradient distribution. 展开更多
关键词 electrically conductive composite functionally gradient materials Stokes' law solution casting ABS Cu
下载PDF
Highly Flexible Fabrics/Epoxy Composites with Hybrid Carbon Nanofillers for Absorption-Dominated Electromagnetic Interference Shielding 被引量:3
10
作者 Jong-Hoon Lee Yoon-Sub Kim +2 位作者 Hea-Jin Ru Seul-Yi Lee Soo-Jin Park 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第11期307-323,共17页
Epoxy-based nano-composites can be ideal electromagnetic interference(EMI)-shielding materials owing to their lightness,chemical inertness,and mechanical durability.However,poor conductivity and brittleness of the epo... Epoxy-based nano-composites can be ideal electromagnetic interference(EMI)-shielding materials owing to their lightness,chemical inertness,and mechanical durability.However,poor conductivity and brittleness of the epoxy resin are challenges for fast-growing portable and flexible EMI-shielding applications,such as smart wristband,medical cloth,aerospace,and military equipment.In this study,we explored hybrid nanofillers of single-walled carbon nanotubes(SWCNT)/reduced graphene oxide(rGO)as conductive inks and polyester fabrics(PFs)as a substrate for flexible EMI-shielding composites.The highest electrical conductivity and fracture toughness of the SWCNT/rGO/PF/epoxy composites were 30.2 S m^(−1)and 38.5 MPa m^(1/2),which are~270 and 65%enhancement over those of the composites without SWCNTs,respectively.Excellent mechanical durability was demonstrated by stable electrical conductivity retention during 1000 cycles of bending test.An EMI-shielding effectiveness of~41 dB in the X-band frequency of 8.2-12.4 GHz with a thickness of 0.6 mm was obtained with an EM absorption-dominant behavior over a 0.7 absorption coefficient.These results are attributed to the hierarchical architecture of the macroscale PF skeleton and nanoscale SWCNT/rGO networks,leading to superior EMI-shielding performance.We believe that this approach provides highly flexible and robust EMI-shielding composites for next-generation wearable electronic devices. 展开更多
关键词 Conductive polymer composites Fracture toughness Flexible composites Absorption-dominated electromagnetic interference shielding
下载PDF
A Novel Method for Preparing Polyurethane Based Conductive Composites with Low Percolation Threshold 被引量:2
11
作者 JiWenHU MingWeiLI +2 位作者 MingQiuZHANG: GenShuiCHENG MinZhiRONG 《Chinese Chemical Letters》 SCIE CAS CSCD 2004年第8期1001-1004,共4页
A novel method for preparing conductive carbon black fllled polymer composites with low percolation threshold from polyurethane emulsion are reported in this paper. The experimental results indicate that with a rise i... A novel method for preparing conductive carbon black fllled polymer composites with low percolation threshold from polyurethane emulsion are reported in this paper. The experimental results indicate that with a rise in carbon black concentration the insulator-conductor transition in the emulsion blended composites occurs at 0.8-1.4vol%. In contrast, the solution blended composites exhibit drastic increase in conductivity at conducting filler fraction as high as 12.3-13.3vol%. It is demonstrated that the composites microstructure rather than chemical structure of the matrix polymer predominantly determines the electrical conduction performance of the composites. 展开更多
关键词 PERCOLATION water-borne polyurethane conductive polymer composites carbon black.
下载PDF
Influence of graphite particle size and its shape on performance of carbon composite bipolar plate 被引量:1
12
作者 张杰 邹彦文 贺俊 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第10期1080-1083,共4页
Bipolar plates for proton exchange membrane fuel cell (PEMFC) where polymer is used as binder and graphite is used as electric filler were prepared by means of compression molding technology. Study on the effects of g... Bipolar plates for proton exchange membrane fuel cell (PEMFC) where polymer is used as binder and graphite is used as electric filler were prepared by means of compression molding technology. Study on the effects of graphite particle size and shape on the bipolar plate performance, such as electrical conductivity, strength, etc. showed that with decrease of graphite particle size, bulk electrical conductivity and thermometric conductivity decreased, but that flexural strength was enhanced. After spherical graphite occurrence in flake-like form, the flexural strength of the bipolar plate was enhanced, electrical conductivity increased but thermal conductivity decreased in direction paralleling pressure direction, and both electrical conductivity and thermometric conductivity reduced in direction perpendicular to pressure direction. 展开更多
关键词 Spherical graphite Fuel cell Bipolar plate Conductive composite materials
下载PDF
Enabling high-performance all-solid-state lithium batteries with high ionic conductive sulfide-based composite solid electrolyte and ex-situ artificial SEI film 被引量:2
13
作者 Jingguang Yi Dan Zhou +3 位作者 Yuhao Liang Hong Liu Haifang Ni Li-Zhen Fan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第7期17-24,共8页
All-solid-state lithium batteries(ASSLBs) employing sulfide electrolyte and lithium(Li) anode have received increasing attention due to the intrinsic safety and high energy density.However,the thick electrolyte layer ... All-solid-state lithium batteries(ASSLBs) employing sulfide electrolyte and lithium(Li) anode have received increasing attention due to the intrinsic safety and high energy density.However,the thick electrolyte layer and lithium dendrites formed at the electrolyte/Li anode interface hinder the realization of high-performance ASSLBs.Herein,a novel membrane consisting of Li_(6)PS_(5) Cl(LPSCl),poly(ethylene oxide)(PEO) and Li-salt(LiTFSI) was prepared as sulfide-based composite solid electrolyte(LPSCl-PEO3-LiTFSI)(LPSCl:PEO=97:3 wt/wt;EO:Li=8:1 mol/mol),which delivers high ionic conductivity(1.1 × 10^(-3) S cm^(-1)) and wide electrochemical window(4.9 V vs.Li^(+)/Li) at 25 ℃.In addition,an ex-situ artificial solid electrolyte interphase(SEI) film enriched with LiF and Li3 N was designed as a protective layer on Li anode(Li(SEI)) to suppress the growth of lithium dendrites.Benefiting from the synergy of sulfide-based composite solid electrolyte and ex-situ artificial SEI,cells of S-CNTs/LPSCI-PEO3-LiTFSI/Li(SEI) and Al_(2)O_(3)@LiNi_(0.5)Co_(0.3)Mn_(0.2)O_(2)/LPSCl-PEO3-LiTFSI/Li(SEI) are assembled and both exhibit high initial discharge capacity of 1221.1 mAh g^(-1)(135.8 mAh g^(-1)) and enhanced cycling stability with 81.6% capacity retention over 200 cycles at 0.05 C(89.2% over 100 cycles at 0.1 C).This work provides a new insight into the synergy of composite solid electrolyte and artificial SEI for achieving high-performance ASSLBs. 展开更多
关键词 All-solid-state lithium batteries HIGH-PERFORMANCE composite solid electrolyte Ionic conductivity Artificial SEI Cycling stability
下载PDF
Aluminum matrix composites reinforced by molybdenum-coated carbon nanotubes 被引量:9
14
作者 Jun-hui Nie Cheng-chang Jia Na Shi Ya-feng Zhang Yi Li XianJia 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2011年第6期695-702,共8页
To extend the application of carbon nanotubes (CNTs) and explore novel aluminum matrix composites,CNTs were coated by molybdenum layers using metal organic chemical vapor deposition,and then Mo-coated CNT (Mo-CNT)... To extend the application of carbon nanotubes (CNTs) and explore novel aluminum matrix composites,CNTs were coated by molybdenum layers using metal organic chemical vapor deposition,and then Mo-coated CNT (Mo-CNT)/Al composites were prepared by the combination processes of powder mixing and spark plasma sintering.The influences of powder mixing and Mo-CNT content on the mechanical properties and electrical conductivity of the composites were investigated.The results show that magnetic stirring is better than mechanical milling for mixing the Mo-CNTs and Al powders.The electrical conductivity of the composites decreases with increasing Mo-CNT content.When the Mo-CNT content is 0.5wt%,the tensile strength and hardness of Mo-CNT/Al reach their maximum values.The tensile strength of 0.5wt% Mo-CNT/Al increases by 29.9%,while the electrical conductivity only decreases by 7.1%,relative to sintered pure Al.The phase analysis of Mo-CNT/Al composites reveals that there is no formation of Al carbide in the composites. 展开更多
关键词 carbon nanotubes aluminum matrix composites molybdenum layer mechanical properties electrical conductivity
下载PDF
CONDUCTIVE COMPOSITES FROM POLYPYRROLE ELECTROPOLYMERIZED IN A POLYURETHANE MATRIX
15
作者 宝净生 M. L. DAROUX +1 位作者 M. LITT E. B. YEAGER 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 1990年第2期149-157,共9页
In order to improve the mechanical properties of polypyrrole, composites were made by electropolymerizing polypyrrole in a polyurethane matrix. Polypyrrole/polyurethane (PPY/PU) composite films containing CLO_4^-, BF_... In order to improve the mechanical properties of polypyrrole, composites were made by electropolymerizing polypyrrole in a polyurethane matrix. Polypyrrole/polyurethane (PPY/PU) composite films containing CLO_4^-, BF_4^- or CH_3-C_6H_4-SO_3^- counter ions were made in a variety of solvent systems and characterized by SEM, electronic conductivity, FTIR, and mechanical properties. Composite films showing much greater fiexibility than pure polypyrrole were obtained, but their electronic conductivities were substantially lower. Measured eonductivities ranged from 0.001 to 8 S/cm, tensile strengths from 44 to 592 psi, and elongation to failure from 3 to 70%. 展开更多
关键词 EG NB PP CONDUCTIVE compositeS FROM POLYPYRROLE ELECTROPOLYMERIZED IN A POLYURETHANE MATRIX IM ACN THF
下载PDF
Low-temperature-cured highly conductive composite of Ag nanowires & polyvinyl alcohol
16
作者 何松 张祥 +3 位作者 杨兵初 徐晓梅 陈辉 周聪华 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第7期426-432,共7页
Flexible conductive films were fabricated from a low-temperature-cured, highly conductive composite of silver nanowires (as conducting filler) and polyvinyl alcohol (PVA, as binder). Sheet resistance of 0.12 Ω/sq... Flexible conductive films were fabricated from a low-temperature-cured, highly conductive composite of silver nanowires (as conducting filler) and polyvinyl alcohol (PVA, as binder). Sheet resistance of 0.12 Ω/sq, conductivity of 2.63 ×10^4 S/cm, and contact resistance of 1.0Ω/cm^2 were measured in the films, along with excellent resistance to scratch- ing and good flexibility, making them suitable electrical contact materials for flexible optoelectronic devices. Effects of curing temperature, curing duration, film thickness, and nanowire length on the film's electrical properties were studied. Due to the abundance of hydroxyl groups on its molecular chains, the addition of PVA improves the film's flexibility and resistance to scratching. Increased nanowire density and nanowire length benefit film conductance. Monte Carlo simulation was used to further explore the impact of these two parameters on the conductivity. It was observed that longer nanowires produce a higher length-ratio of conducting routes in the networks, giving better film conductivity. 展开更多
关键词 conductive composite polyvinyl alcohol silver nanowires Monte Carlo simulation
下载PDF
Electrical Resistance Behavior of Vinylester Composites Filled with Glass-carbon Hybrid Fibers
17
作者 王钧 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第2期295-299,共5页
Vinylester (bismethacryloxy derivative with glass-carbon hybrid fibers (CF-GF) weight fraction of a bisphenol-A type EP resin, VE) composites of 50%, were prepared by the compress molding method. The distribution ... Vinylester (bismethacryloxy derivative with glass-carbon hybrid fibers (CF-GF) weight fraction of a bisphenol-A type EP resin, VE) composites of 50%, were prepared by the compress molding method. The distribution of carbon fiber in the hybrids was observed by stereomicroscope. The electrical resistance behavior of the composites filled with different carbon fiber (CF) weight contents (0.5% to 20%) was studied. The experimental results show that the electrical resistance behaviors of CF-GF/VE composites are different with those of CF/VE composites because carbon fibers' conducting networks are broken by the glass fibers in the CF-GF/VE composites. The carbon fibers distribute uniformly in the networks of glass fibers (GF) like single silk and form the semi-continuous conducting networks. Composite filled with GF-CF hybrid has a higher percolation threshold than that filled with pure CF. At that time, the resistivity of CF-GF/VE composites varies little with the temperature increasing. The temperature coefficient of resistivity in GF-CF/VE composite is less than 317 ppm and the variation of the resistivity after ten thermal cycles from 20℃ to 240 ℃is less than 1.96%. 展开更多
关键词 conducting composite hybrid fibers resistivity-temperature coefficient synergy effect
下载PDF
STUDIES ON THE POLYPYRROLE/POLYELECTROLYTE MOLECULAR COMPOSITES
18
作者 宝净生 徐朝俦 蔡玮 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 1993年第2期178-184,共7页
The potyelectrolyte of propane sulfonate(PS) grafted PPTA copolymers——PPTA-PS, PPTA[O]-PS, PPTA[C]-PS were prepared and used as electrolyte in the process of electrochemical polymerization of pyrrole to form the mol... The potyelectrolyte of propane sulfonate(PS) grafted PPTA copolymers——PPTA-PS, PPTA[O]-PS, PPTA[C]-PS were prepared and used as electrolyte in the process of electrochemical polymerization of pyrrole to form the molecular composite polypyrrole (PPY)/Polyelectrolyte.The preparation and liquid crystalline property of three kinds of polyelectrolyte, the electrical conductivity, mechanical properties, SEM and thermoproperties of PPY/polyelectrolyte are presented in detail. 展开更多
关键词 Poiypyrrole Poly(p-phenylene terephthalamide) POLYELECTROLYTE Conductive composite
下载PDF
Influence of γ-ray Irradiation on the PTC Effect of EPDM/Carbon Black Composite
19
作者 HE Xiu juan WANG Li jie CHEN Xin fang 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2000年第3期283-285,共3页
关键词 Conducting composite PTC effect EPDM Carbon black
下载PDF
ELECTRICALLY CONDUCTIVE COMPOSITE PREPARED BY ELECTROCHEMICAL POLYMERIZATION OF PYRROLE IN POLY-(p- PHENYLENE TEREPHTHALAMIDE) MATRIX
20
作者 毕先同 裴启兵 +1 位作者 韩宝珍 宝净生 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 1991年第4期289-293,共5页
The preparation of PPy/PPTA conductive composite films by electrochemical method is presented.The first step is to cast a thin layer of poly (p-phenylene-terephthalamide) (PPTA) on a slice of Pt working electrode. The... The preparation of PPy/PPTA conductive composite films by electrochemical method is presented.The first step is to cast a thin layer of poly (p-phenylene-terephthalamide) (PPTA) on a slice of Pt working electrode. The second step is to electrochemically polymerize pyrrole on the PPTA/Pt working electrode. Both of the electrical conductivity and the mechanical properties of the PPy/PPTA composite film are better than those of the pure PPy film, and the film has excellent flexibility at low temperature, even in liquid nitrogen.The SEM picture of the cross-section of PPy,/PPTA composite film showed that the two components were well mixed.Cyclic voltammograms of PPy,/PPTA film in aqueous solution showed that the conductive films could be reduced and reoxidized. 展开更多
关键词 POLYPYRROLE Poly (p-phenylene-terephthalamide) Conductive composite
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部