Highly thermal conductivity materials with excellent electromagnetic interference shielding and Joule heating performances are ideal for thermal management in the next generation of communication industry,artificial i...Highly thermal conductivity materials with excellent electromagnetic interference shielding and Joule heating performances are ideal for thermal management in the next generation of communication industry,artificial intelligence and wearable electronics.In this work,silver nanowires(AgNWs)are prepared using silver nitrate as the silver source and ethylene glycol as the solvent and reducing agent,and boron nitride(BN)is performed to prepare BN nanosheets(BNNS)with the help of isopropyl alcohol and ultrasonication-assisted peeling method,which are compounded with aramid nanofibers(ANF)prepared by chemical dissociation,respectively,and the(BNNS/ANF)-(AgNWs/ANF)thermal conductivity and electromagnetic interference shielding composite films with Janus structures are prepared by the"vacuum-assisted filtration and hot-pressing"method.Janus(BNNS/ANF)-(AgNWs/ANF)composite films exhibit"one side insulating,one side conducting"performance,the surface resistivity of the BNNS/ANF surface is 4.7×10^(13) Ω,while the conductivity of the AgNWs/ANF surface is 5,275 S/cm.And Janus(BNNS/ANF)-(AgNWs/ANF)composite film with thickness of 95 pm has a high in-plane thermal conductivity coefficient of 8.12 W/(m·K)and superior electromagnetic interference shielding effectiveness of 70 dB.The obtained composite film also has excellent tensile strength of 122.9 MPa and tensile modulus and 2.7 GPa.It also has good temperature-voltage response characteristics(high Joule heating temperature at low supply voltage(5 V,215.0℃),fast response time(10 s)),excellent electrical stability and reliability(stable and constant real-time relative resistance under up to 300 cycles and 1,500 s of tensile-bending fatigue work tests).展开更多
Rapid development of energy,electrical and electronic technologies has put forward higher requirements for the thermal conductivities of polymers and their composites.However,the thermal conductivity coefficient(λ)va...Rapid development of energy,electrical and electronic technologies has put forward higher requirements for the thermal conductivities of polymers and their composites.However,the thermal conductivity coefficient(λ)values of prepared thermally conductive polymer composites are still difficult to achieve expectations,which has become the bottleneck in the fields of thermally conductive polymer composites.Aimed at that,based on the accumulation of the previous research works by related researchers and our research group,this paper proposes three possible directions for breaking through the bottlenecks:(1)preparing and synthesizing intrinsically thermally conductive polymers,(2)reducing the interfacial thermal resistance in thermally conductive polymer composites,and(3)establishing suitable thermal conduction models and studying inner thermal conduction mechanism to guide experimental optimization.Also,the future development trends of the three above-mentioned directions are foreseen,hoping to provide certain basis and guidance for the preparation,researches and development of thermally conductive polymers and their composites.展开更多
Thick electrodes can increase incorporation of active electrode materials by diminishing the proportion of inactive constituents,improving the overall energy density of batteries.However,thick electrodes fabricated us...Thick electrodes can increase incorporation of active electrode materials by diminishing the proportion of inactive constituents,improving the overall energy density of batteries.However,thick electrodes fabricated using the conventional slurry casting approach frequently exhibit an exacerbated accumulation of carbon additives and binders on their surfaces,invariably leading to compromised electrochemical properties.In this study,we introduce a designed conductive agent/binder composite synthesized from carbon nanotube and polytetrafluoroethylene.This agent/binder composite facilitates production of dry-process-prepared ultra-thick electrodes endowed with a three-dimensional and uniformly distributed percolative architecture,ensuring superior electronic conductivity and remarkable mechanical resilience.Using this approach,ultra-thick LiCoO_(2)(LCO) electrodes demonstrated superior cycling performance and rate capabilities,registering an impressive loading capacity of up to 101.4 mg/cm^(2),signifying a 242% increase in battery energy density.In another analytical endeavor,time-of-flight secondary ion mass spectroscopy was used to clarify the distribution of cathode electrolyte interphase(CEI) in cycled LCO electrodes.The results provide unprecedented evidence explaining the intricate correlation between CEI generation and carbon distribution,highlighting the intrinsic advantages of the proposed dry-process approach in fine-tu ning the CEI,with excellent cycling performance in batteries equipped with ultra-thick electrodes.展开更多
Low thermal expansion composites are difficult to obtain by using Al with larger positive thermal expansion coefficient(TEC) and the materials with smaller negative TECs. In this investigation, Y2Mo3O12 with larger ...Low thermal expansion composites are difficult to obtain by using Al with larger positive thermal expansion coefficient(TEC) and the materials with smaller negative TECs. In this investigation, Y2Mo3O12 with larger negative TEC is used to combine with Al to obtain a low thermal expansion composite with high conductivity. The TEC of Al is reduced by 19%for a ratio Al:Y2Mo3O12 of 0.3118. When the mass ratio of Al:Y2Mo3O12 increases to 2.0000, the conductivity of the composite increases so much that a transformation from capacitance to pure resistance appears. The results suggest that Y2Mo3O12 plays a dominant role in the composite for low content of Al(presenting isolate particles), while the content of Al increases enough to contact each other, the composite presents mainly the property of Al. For the effect of high content Al, it is considered that Al is squeezed out of the cermets during the uniaxial pressure process to form a thin layer on the surface.展开更多
Highly conductive polymer composites(CPCs) with excellent mechanical flexibility are ideal materials for designing excellent electromagnetic interference(EMI) shielding materials,which can be used for the electromagne...Highly conductive polymer composites(CPCs) with excellent mechanical flexibility are ideal materials for designing excellent electromagnetic interference(EMI) shielding materials,which can be used for the electromagnetic interference protection of flexible electronic devices.It is extremely urgent to fabricate ultra-strong EMI shielding CPCs with efficient conductive networks.In this paper,a novel silver-plated polylactide short fiber(Ag@PL ASF,AAF) was fabricated and was integrated with carbon nanotubes(CNT) to construct a multi-scale conductive network in polydimethylsiloxane(PDMS) matrix.The multi-scale conductive network endowed the flexible PDMS/AAF/CNT composite with excellent electrical conductivity of 440 S m-1and ultra-strong EMI shielding effectiveness(EMI SE) of up to 113 dB,containing only 5.0 vol% of AAF and 3.0 vol% of CNT(11.1wt% conductive filler content).Due to its excellent flexibility,the composite still showed 94% and 90% retention rates of EMI SE even after subjected to a simulated aging strategy(60℃ for 7 days) and 10,000 bending-releasing cycles.This strategy provides an important guidance for designing excellent EMI shielding materials to protect the workspace,environment and sensitive circuits against radiation for flexible electronic devices.展开更多
A novel technique for preparing functionally gradient electrically conductive polymeric composites was developed by using of solution casting technique on the principle of Stokes' law. Acrylonitrile- butadiene-styren...A novel technique for preparing functionally gradient electrically conductive polymeric composites was developed by using of solution casting technique on the principle of Stokes' law. Acrylonitrile- butadiene-styrene/Cu (ABS/Cu) gradient polymeric composites were prepared successfully using this technique. The gradient structures, electrically conductive performance and mechanical properties of the ABS/Cu composites were investigated. Optical microscope observation shows that the gradient distribution of Cu particles in ABS matrix was formed along their thickness-direction. The electrically conductive testing results indicate that the order of magnitude of surface resistivity was kept in 10^15 Ω at ABS rich side, while that declined to 10^5 Ω at Cu particles rich side, and the percolation threshold was in the range of 2.82 vo1%- 4.74 vol% Cu content at Cu particles rich side. Mechanical test shows that the tensile strength reduced insignificantly as the content of Cu increases owing to the gradient distribution.展开更多
Epoxy-based nano-composites can be ideal electromagnetic interference(EMI)-shielding materials owing to their lightness,chemical inertness,and mechanical durability.However,poor conductivity and brittleness of the epo...Epoxy-based nano-composites can be ideal electromagnetic interference(EMI)-shielding materials owing to their lightness,chemical inertness,and mechanical durability.However,poor conductivity and brittleness of the epoxy resin are challenges for fast-growing portable and flexible EMI-shielding applications,such as smart wristband,medical cloth,aerospace,and military equipment.In this study,we explored hybrid nanofillers of single-walled carbon nanotubes(SWCNT)/reduced graphene oxide(rGO)as conductive inks and polyester fabrics(PFs)as a substrate for flexible EMI-shielding composites.The highest electrical conductivity and fracture toughness of the SWCNT/rGO/PF/epoxy composites were 30.2 S m^(−1)and 38.5 MPa m^(1/2),which are~270 and 65%enhancement over those of the composites without SWCNTs,respectively.Excellent mechanical durability was demonstrated by stable electrical conductivity retention during 1000 cycles of bending test.An EMI-shielding effectiveness of~41 dB in the X-band frequency of 8.2-12.4 GHz with a thickness of 0.6 mm was obtained with an EM absorption-dominant behavior over a 0.7 absorption coefficient.These results are attributed to the hierarchical architecture of the macroscale PF skeleton and nanoscale SWCNT/rGO networks,leading to superior EMI-shielding performance.We believe that this approach provides highly flexible and robust EMI-shielding composites for next-generation wearable electronic devices.展开更多
A novel method for preparing conductive carbon black fllled polymer composites with low percolation threshold from polyurethane emulsion are reported in this paper. The experimental results indicate that with a rise i...A novel method for preparing conductive carbon black fllled polymer composites with low percolation threshold from polyurethane emulsion are reported in this paper. The experimental results indicate that with a rise in carbon black concentration the insulator-conductor transition in the emulsion blended composites occurs at 0.8-1.4vol%. In contrast, the solution blended composites exhibit drastic increase in conductivity at conducting filler fraction as high as 12.3-13.3vol%. It is demonstrated that the composites microstructure rather than chemical structure of the matrix polymer predominantly determines the electrical conduction performance of the composites.展开更多
Bipolar plates for proton exchange membrane fuel cell (PEMFC) where polymer is used as binder and graphite is used as electric filler were prepared by means of compression molding technology. Study on the effects of g...Bipolar plates for proton exchange membrane fuel cell (PEMFC) where polymer is used as binder and graphite is used as electric filler were prepared by means of compression molding technology. Study on the effects of graphite particle size and shape on the bipolar plate performance, such as electrical conductivity, strength, etc. showed that with decrease of graphite particle size, bulk electrical conductivity and thermometric conductivity decreased, but that flexural strength was enhanced. After spherical graphite occurrence in flake-like form, the flexural strength of the bipolar plate was enhanced, electrical conductivity increased but thermal conductivity decreased in direction paralleling pressure direction, and both electrical conductivity and thermometric conductivity reduced in direction perpendicular to pressure direction.展开更多
All-solid-state lithium batteries(ASSLBs) employing sulfide electrolyte and lithium(Li) anode have received increasing attention due to the intrinsic safety and high energy density.However,the thick electrolyte layer ...All-solid-state lithium batteries(ASSLBs) employing sulfide electrolyte and lithium(Li) anode have received increasing attention due to the intrinsic safety and high energy density.However,the thick electrolyte layer and lithium dendrites formed at the electrolyte/Li anode interface hinder the realization of high-performance ASSLBs.Herein,a novel membrane consisting of Li_(6)PS_(5) Cl(LPSCl),poly(ethylene oxide)(PEO) and Li-salt(LiTFSI) was prepared as sulfide-based composite solid electrolyte(LPSCl-PEO3-LiTFSI)(LPSCl:PEO=97:3 wt/wt;EO:Li=8:1 mol/mol),which delivers high ionic conductivity(1.1 × 10^(-3) S cm^(-1)) and wide electrochemical window(4.9 V vs.Li^(+)/Li) at 25 ℃.In addition,an ex-situ artificial solid electrolyte interphase(SEI) film enriched with LiF and Li3 N was designed as a protective layer on Li anode(Li(SEI)) to suppress the growth of lithium dendrites.Benefiting from the synergy of sulfide-based composite solid electrolyte and ex-situ artificial SEI,cells of S-CNTs/LPSCI-PEO3-LiTFSI/Li(SEI) and Al_(2)O_(3)@LiNi_(0.5)Co_(0.3)Mn_(0.2)O_(2)/LPSCl-PEO3-LiTFSI/Li(SEI) are assembled and both exhibit high initial discharge capacity of 1221.1 mAh g^(-1)(135.8 mAh g^(-1)) and enhanced cycling stability with 81.6% capacity retention over 200 cycles at 0.05 C(89.2% over 100 cycles at 0.1 C).This work provides a new insight into the synergy of composite solid electrolyte and artificial SEI for achieving high-performance ASSLBs.展开更多
To extend the application of carbon nanotubes (CNTs) and explore novel aluminum matrix composites,CNTs were coated by molybdenum layers using metal organic chemical vapor deposition,and then Mo-coated CNT (Mo-CNT)...To extend the application of carbon nanotubes (CNTs) and explore novel aluminum matrix composites,CNTs were coated by molybdenum layers using metal organic chemical vapor deposition,and then Mo-coated CNT (Mo-CNT)/Al composites were prepared by the combination processes of powder mixing and spark plasma sintering.The influences of powder mixing and Mo-CNT content on the mechanical properties and electrical conductivity of the composites were investigated.The results show that magnetic stirring is better than mechanical milling for mixing the Mo-CNTs and Al powders.The electrical conductivity of the composites decreases with increasing Mo-CNT content.When the Mo-CNT content is 0.5wt%,the tensile strength and hardness of Mo-CNT/Al reach their maximum values.The tensile strength of 0.5wt% Mo-CNT/Al increases by 29.9%,while the electrical conductivity only decreases by 7.1%,relative to sintered pure Al.The phase analysis of Mo-CNT/Al composites reveals that there is no formation of Al carbide in the composites.展开更多
In order to improve the mechanical properties of polypyrrole, composites were made by electropolymerizing polypyrrole in a polyurethane matrix. Polypyrrole/polyurethane (PPY/PU) composite films containing CLO_4^-, BF_...In order to improve the mechanical properties of polypyrrole, composites were made by electropolymerizing polypyrrole in a polyurethane matrix. Polypyrrole/polyurethane (PPY/PU) composite films containing CLO_4^-, BF_4^- or CH_3-C_6H_4-SO_3^- counter ions were made in a variety of solvent systems and characterized by SEM, electronic conductivity, FTIR, and mechanical properties. Composite films showing much greater fiexibility than pure polypyrrole were obtained, but their electronic conductivities were substantially lower. Measured eonductivities ranged from 0.001 to 8 S/cm, tensile strengths from 44 to 592 psi, and elongation to failure from 3 to 70%.展开更多
Flexible conductive films were fabricated from a low-temperature-cured, highly conductive composite of silver nanowires (as conducting filler) and polyvinyl alcohol (PVA, as binder). Sheet resistance of 0.12 Ω/sq...Flexible conductive films were fabricated from a low-temperature-cured, highly conductive composite of silver nanowires (as conducting filler) and polyvinyl alcohol (PVA, as binder). Sheet resistance of 0.12 Ω/sq, conductivity of 2.63 ×10^4 S/cm, and contact resistance of 1.0Ω/cm^2 were measured in the films, along with excellent resistance to scratch- ing and good flexibility, making them suitable electrical contact materials for flexible optoelectronic devices. Effects of curing temperature, curing duration, film thickness, and nanowire length on the film's electrical properties were studied. Due to the abundance of hydroxyl groups on its molecular chains, the addition of PVA improves the film's flexibility and resistance to scratching. Increased nanowire density and nanowire length benefit film conductance. Monte Carlo simulation was used to further explore the impact of these two parameters on the conductivity. It was observed that longer nanowires produce a higher length-ratio of conducting routes in the networks, giving better film conductivity.展开更多
Vinylester (bismethacryloxy derivative with glass-carbon hybrid fibers (CF-GF) weight fraction of a bisphenol-A type EP resin, VE) composites of 50%, were prepared by the compress molding method. The distribution ...Vinylester (bismethacryloxy derivative with glass-carbon hybrid fibers (CF-GF) weight fraction of a bisphenol-A type EP resin, VE) composites of 50%, were prepared by the compress molding method. The distribution of carbon fiber in the hybrids was observed by stereomicroscope. The electrical resistance behavior of the composites filled with different carbon fiber (CF) weight contents (0.5% to 20%) was studied. The experimental results show that the electrical resistance behaviors of CF-GF/VE composites are different with those of CF/VE composites because carbon fibers' conducting networks are broken by the glass fibers in the CF-GF/VE composites. The carbon fibers distribute uniformly in the networks of glass fibers (GF) like single silk and form the semi-continuous conducting networks. Composite filled with GF-CF hybrid has a higher percolation threshold than that filled with pure CF. At that time, the resistivity of CF-GF/VE composites varies little with the temperature increasing. The temperature coefficient of resistivity in GF-CF/VE composite is less than 317 ppm and the variation of the resistivity after ten thermal cycles from 20℃ to 240 ℃is less than 1.96%.展开更多
The potyelectrolyte of propane sulfonate(PS) grafted PPTA copolymers——PPTA-PS, PPTA[O]-PS, PPTA[C]-PS were prepared and used as electrolyte in the process of electrochemical polymerization of pyrrole to form the mol...The potyelectrolyte of propane sulfonate(PS) grafted PPTA copolymers——PPTA-PS, PPTA[O]-PS, PPTA[C]-PS were prepared and used as electrolyte in the process of electrochemical polymerization of pyrrole to form the molecular composite polypyrrole (PPY)/Polyelectrolyte.The preparation and liquid crystalline property of three kinds of polyelectrolyte, the electrical conductivity, mechanical properties, SEM and thermoproperties of PPY/polyelectrolyte are presented in detail.展开更多
The preparation of PPy/PPTA conductive composite films by electrochemical method is presented.The first step is to cast a thin layer of poly (p-phenylene-terephthalamide) (PPTA) on a slice of Pt working electrode. The...The preparation of PPy/PPTA conductive composite films by electrochemical method is presented.The first step is to cast a thin layer of poly (p-phenylene-terephthalamide) (PPTA) on a slice of Pt working electrode. The second step is to electrochemically polymerize pyrrole on the PPTA/Pt working electrode. Both of the electrical conductivity and the mechanical properties of the PPy/PPTA composite film are better than those of the pure PPy film, and the film has excellent flexibility at low temperature, even in liquid nitrogen.The SEM picture of the cross-section of PPy,/PPTA composite film showed that the two components were well mixed.Cyclic voltammograms of PPy,/PPTA film in aqueous solution showed that the conductive films could be reduced and reoxidized.展开更多
Electrically conductive elastomer composites(CECs)with segregated networks of conductive nanofillers show high potential in stretchable strain sensors due to balanced mechanical and electrical properties,yet the sensi...Electrically conductive elastomer composites(CECs)with segregated networks of conductive nanofillers show high potential in stretchable strain sensors due to balanced mechanical and electrical properties,yet the sensitivity at low strain is generally insufficient for practical application.Herein,we report an easy and effective way to improve the resistive response to low strain for CECs with segregated network structure via adding stiff alumina into carbon nanostructures(CNS).The CEC containing 0.7 wt%CNS and 5 wt%Al_(2)O_(3) almost sustains the same elasticity(elongation at break of~900%)and conductivity(0.8 S/m)as the control,while the piezoresistive sensitivity is significantly improved.Thermoplastic polyurethane(TPU)composites with a segregated network of hybrid nanofillers(CNS and Al_(2)O_(3))show much higher strain sensitivity(Gauge factor,GF-566)at low strain(45%strain)due to a local stress concentration effect,this sensitivity is superior to that of TPU/CNS composites(GF-11).Such a local stress concentration effect depends on alumina content and its distribution at the TPU particle interface.In addition,CECs with hybrid fillers show better reproducibility in cyclic piezoresistive behavior testing than the control.This work offers an easy method for fabricating CECs with a segregated filler network offering stretchable strain sensors with a high strain sensitivity.展开更多
Wearable and stretchable strain sensors have potential values in the fields of human motion and health monitoring,flexible electronics,and soft robotic skin.The wearable and stretchable strain sensors can be directly ...Wearable and stretchable strain sensors have potential values in the fields of human motion and health monitoring,flexible electronics,and soft robotic skin.The wearable and stretchable strain sensors can be directly attached to human skin,providing visualized detection for human motions and personal healthcare.Conductive polymer composites(CPC)composed of conductive fillers and flexible polymers have the advantages of high stretchability,good flexibility,superior durability,which can be used to prepare flexible strain sensors with large working strain and outstanding sensitivity.This review has put forward a comprehensive summary on the fabrication methods,advanced mechanisms and strain sensing abilities of CPC strain sensors reported in recent years,especially the sensors with superior performance.Finally,the structural design,bionic function,integration technology and further application of CPC strain sensors are prospected.展开更多
Conductive polymer composites(CPCs)are widely used in the flexible strain sensors due to their simple fabrication process and controllable sensing properties.However,temperature has a significance impact on the strain...Conductive polymer composites(CPCs)are widely used in the flexible strain sensors due to their simple fabrication process and controllable sensing properties.However,temperature has a significance impact on the strain sensing performance of CPCs.In this paper,the strain sensing characteristics of MWCNTs/PDMS composites under temperature loading were systematically studied.It was found that the sensitivity decreased with the increase of temperature and the phenomenon of shoulder peak also decreased.Based on the theory of polymer mechanics,it was found that temperature could affect the conductive network by changing the motion degree of PDMS molecular chain,resulting in the change of sensing characteristics.Finally,a mathematical model of the resistance against loading condition(strain and temperature),associated with the force−electrical equivalent relationship of composites,was established to discuss the experimental results as well as the sensing mechanism.The results presented in this paper was believed helpful for the further application of strain sensors in different temperature conditions.展开更多
基金The authors are grateful for the support and funding from the Guangdong Basic and Applied Basic Research Foundation(No.2019B1515120093)Foundation of National Natural Science Foundation of China(Nos.U21A2093 and 51973173)Technological Base Scientific Research Projects(Highly Thermal conductivity Nonmetal Materials).
文摘Highly thermal conductivity materials with excellent electromagnetic interference shielding and Joule heating performances are ideal for thermal management in the next generation of communication industry,artificial intelligence and wearable electronics.In this work,silver nanowires(AgNWs)are prepared using silver nitrate as the silver source and ethylene glycol as the solvent and reducing agent,and boron nitride(BN)is performed to prepare BN nanosheets(BNNS)with the help of isopropyl alcohol and ultrasonication-assisted peeling method,which are compounded with aramid nanofibers(ANF)prepared by chemical dissociation,respectively,and the(BNNS/ANF)-(AgNWs/ANF)thermal conductivity and electromagnetic interference shielding composite films with Janus structures are prepared by the"vacuum-assisted filtration and hot-pressing"method.Janus(BNNS/ANF)-(AgNWs/ANF)composite films exhibit"one side insulating,one side conducting"performance,the surface resistivity of the BNNS/ANF surface is 4.7×10^(13) Ω,while the conductivity of the AgNWs/ANF surface is 5,275 S/cm.And Janus(BNNS/ANF)-(AgNWs/ANF)composite film with thickness of 95 pm has a high in-plane thermal conductivity coefficient of 8.12 W/(m·K)and superior electromagnetic interference shielding effectiveness of 70 dB.The obtained composite film also has excellent tensile strength of 122.9 MPa and tensile modulus and 2.7 GPa.It also has good temperature-voltage response characteristics(high Joule heating temperature at low supply voltage(5 V,215.0℃),fast response time(10 s)),excellent electrical stability and reliability(stable and constant real-time relative resistance under up to 300 cycles and 1,500 s of tensile-bending fatigue work tests).
基金National Natural Science Foundation of China(51773169 and 51973173)Guangdong Basic and Applied Basic Research Foundation(2019B1515120093)+2 种基金Technological Base Scientific Research ProjectsNatural Science Basic Research Plan for Distinguished Young Scholars in Shaanxi Province(2019JC-11)Polymer Electromagnetic Functional Materials Innovation Team of Shaanxi Sanqin Scholars.
文摘Rapid development of energy,electrical and electronic technologies has put forward higher requirements for the thermal conductivities of polymers and their composites.However,the thermal conductivity coefficient(λ)values of prepared thermally conductive polymer composites are still difficult to achieve expectations,which has become the bottleneck in the fields of thermally conductive polymer composites.Aimed at that,based on the accumulation of the previous research works by related researchers and our research group,this paper proposes three possible directions for breaking through the bottlenecks:(1)preparing and synthesizing intrinsically thermally conductive polymers,(2)reducing the interfacial thermal resistance in thermally conductive polymer composites,and(3)establishing suitable thermal conduction models and studying inner thermal conduction mechanism to guide experimental optimization.Also,the future development trends of the three above-mentioned directions are foreseen,hoping to provide certain basis and guidance for the preparation,researches and development of thermally conductive polymers and their composites.
基金supported by the National Key Research and Development Program of China,China(2019YFA0705102)the National Natural Science Foundation of China,China(22179144,22005332)。
文摘Thick electrodes can increase incorporation of active electrode materials by diminishing the proportion of inactive constituents,improving the overall energy density of batteries.However,thick electrodes fabricated using the conventional slurry casting approach frequently exhibit an exacerbated accumulation of carbon additives and binders on their surfaces,invariably leading to compromised electrochemical properties.In this study,we introduce a designed conductive agent/binder composite synthesized from carbon nanotube and polytetrafluoroethylene.This agent/binder composite facilitates production of dry-process-prepared ultra-thick electrodes endowed with a three-dimensional and uniformly distributed percolative architecture,ensuring superior electronic conductivity and remarkable mechanical resilience.Using this approach,ultra-thick LiCoO_(2)(LCO) electrodes demonstrated superior cycling performance and rate capabilities,registering an impressive loading capacity of up to 101.4 mg/cm^(2),signifying a 242% increase in battery energy density.In another analytical endeavor,time-of-flight secondary ion mass spectroscopy was used to clarify the distribution of cathode electrolyte interphase(CEI) in cycled LCO electrodes.The results provide unprecedented evidence explaining the intricate correlation between CEI generation and carbon distribution,highlighting the intrinsic advantages of the proposed dry-process approach in fine-tu ning the CEI,with excellent cycling performance in batteries equipped with ultra-thick electrodes.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10974183 and 11104252)the Doctoral Fund of the Ministry of Education of China(Grant No.20114101110003)+2 种基金the Fund for Science&Technology Innovation Team of Zhengzhou,China(Grant No.112PCXTD337)the Industrial Science and Technology Research Projects of Kaifeng,Henan Province,China(Grant No.1501049)the Key Research Projects of Henan Higher Education Institutions,China(Grant No.18A140014)
文摘Low thermal expansion composites are difficult to obtain by using Al with larger positive thermal expansion coefficient(TEC) and the materials with smaller negative TECs. In this investigation, Y2Mo3O12 with larger negative TEC is used to combine with Al to obtain a low thermal expansion composite with high conductivity. The TEC of Al is reduced by 19%for a ratio Al:Y2Mo3O12 of 0.3118. When the mass ratio of Al:Y2Mo3O12 increases to 2.0000, the conductivity of the composite increases so much that a transformation from capacitance to pure resistance appears. The results suggest that Y2Mo3O12 plays a dominant role in the composite for low content of Al(presenting isolate particles), while the content of Al increases enough to contact each other, the composite presents mainly the property of Al. For the effect of high content Al, it is considered that Al is squeezed out of the cermets during the uniaxial pressure process to form a thin layer on the surface.
基金supported by the National Natural Science Foundation of China(Nos.51973142,52033005,52003169).
文摘Highly conductive polymer composites(CPCs) with excellent mechanical flexibility are ideal materials for designing excellent electromagnetic interference(EMI) shielding materials,which can be used for the electromagnetic interference protection of flexible electronic devices.It is extremely urgent to fabricate ultra-strong EMI shielding CPCs with efficient conductive networks.In this paper,a novel silver-plated polylactide short fiber(Ag@PL ASF,AAF) was fabricated and was integrated with carbon nanotubes(CNT) to construct a multi-scale conductive network in polydimethylsiloxane(PDMS) matrix.The multi-scale conductive network endowed the flexible PDMS/AAF/CNT composite with excellent electrical conductivity of 440 S m-1and ultra-strong EMI shielding effectiveness(EMI SE) of up to 113 dB,containing only 5.0 vol% of AAF and 3.0 vol% of CNT(11.1wt% conductive filler content).Due to its excellent flexibility,the composite still showed 94% and 90% retention rates of EMI SE even after subjected to a simulated aging strategy(60℃ for 7 days) and 10,000 bending-releasing cycles.This strategy provides an important guidance for designing excellent EMI shielding materials to protect the workspace,environment and sensitive circuits against radiation for flexible electronic devices.
基金Funded by the National Natural Science Foundation of China(No.21274007)the Beijing Natural Science Foundation+1 种基金the Key Scientific Project of Beijing Municipal Education Commission(No.KZ201110011014)the Science and Technology Innovation Platform of Beijing Municipal Education Commission(No.PXM2012-014213-000025)
文摘A novel technique for preparing functionally gradient electrically conductive polymeric composites was developed by using of solution casting technique on the principle of Stokes' law. Acrylonitrile- butadiene-styrene/Cu (ABS/Cu) gradient polymeric composites were prepared successfully using this technique. The gradient structures, electrically conductive performance and mechanical properties of the ABS/Cu composites were investigated. Optical microscope observation shows that the gradient distribution of Cu particles in ABS matrix was formed along their thickness-direction. The electrically conductive testing results indicate that the order of magnitude of surface resistivity was kept in 10^15 Ω at ABS rich side, while that declined to 10^5 Ω at Cu particles rich side, and the percolation threshold was in the range of 2.82 vo1%- 4.74 vol% Cu content at Cu particles rich side. Mechanical test shows that the tensile strength reduced insignificantly as the content of Cu increases owing to the gradient distribution.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2022M3J7A1062940).
文摘Epoxy-based nano-composites can be ideal electromagnetic interference(EMI)-shielding materials owing to their lightness,chemical inertness,and mechanical durability.However,poor conductivity and brittleness of the epoxy resin are challenges for fast-growing portable and flexible EMI-shielding applications,such as smart wristband,medical cloth,aerospace,and military equipment.In this study,we explored hybrid nanofillers of single-walled carbon nanotubes(SWCNT)/reduced graphene oxide(rGO)as conductive inks and polyester fabrics(PFs)as a substrate for flexible EMI-shielding composites.The highest electrical conductivity and fracture toughness of the SWCNT/rGO/PF/epoxy composites were 30.2 S m^(−1)and 38.5 MPa m^(1/2),which are~270 and 65%enhancement over those of the composites without SWCNTs,respectively.Excellent mechanical durability was demonstrated by stable electrical conductivity retention during 1000 cycles of bending test.An EMI-shielding effectiveness of~41 dB in the X-band frequency of 8.2-12.4 GHz with a thickness of 0.6 mm was obtained with an EM absorption-dominant behavior over a 0.7 absorption coefficient.These results are attributed to the hierarchical architecture of the macroscale PF skeleton and nanoscale SWCNT/rGO networks,leading to superior EMI-shielding performance.We believe that this approach provides highly flexible and robust EMI-shielding composites for next-generation wearable electronic devices.
文摘A novel method for preparing conductive carbon black fllled polymer composites with low percolation threshold from polyurethane emulsion are reported in this paper. The experimental results indicate that with a rise in carbon black concentration the insulator-conductor transition in the emulsion blended composites occurs at 0.8-1.4vol%. In contrast, the solution blended composites exhibit drastic increase in conductivity at conducting filler fraction as high as 12.3-13.3vol%. It is demonstrated that the composites microstructure rather than chemical structure of the matrix polymer predominantly determines the electrical conduction performance of the composites.
文摘Bipolar plates for proton exchange membrane fuel cell (PEMFC) where polymer is used as binder and graphite is used as electric filler were prepared by means of compression molding technology. Study on the effects of graphite particle size and shape on the bipolar plate performance, such as electrical conductivity, strength, etc. showed that with decrease of graphite particle size, bulk electrical conductivity and thermometric conductivity decreased, but that flexural strength was enhanced. After spherical graphite occurrence in flake-like form, the flexural strength of the bipolar plate was enhanced, electrical conductivity increased but thermal conductivity decreased in direction paralleling pressure direction, and both electrical conductivity and thermometric conductivity reduced in direction perpendicular to pressure direction.
基金supported by the National Natural Science Foundation of China(51872027)the Fundamental Research Funds for the Central Universities(FRF-TP-20-014A2)。
文摘All-solid-state lithium batteries(ASSLBs) employing sulfide electrolyte and lithium(Li) anode have received increasing attention due to the intrinsic safety and high energy density.However,the thick electrolyte layer and lithium dendrites formed at the electrolyte/Li anode interface hinder the realization of high-performance ASSLBs.Herein,a novel membrane consisting of Li_(6)PS_(5) Cl(LPSCl),poly(ethylene oxide)(PEO) and Li-salt(LiTFSI) was prepared as sulfide-based composite solid electrolyte(LPSCl-PEO3-LiTFSI)(LPSCl:PEO=97:3 wt/wt;EO:Li=8:1 mol/mol),which delivers high ionic conductivity(1.1 × 10^(-3) S cm^(-1)) and wide electrochemical window(4.9 V vs.Li^(+)/Li) at 25 ℃.In addition,an ex-situ artificial solid electrolyte interphase(SEI) film enriched with LiF and Li3 N was designed as a protective layer on Li anode(Li(SEI)) to suppress the growth of lithium dendrites.Benefiting from the synergy of sulfide-based composite solid electrolyte and ex-situ artificial SEI,cells of S-CNTs/LPSCI-PEO3-LiTFSI/Li(SEI) and Al_(2)O_(3)@LiNi_(0.5)Co_(0.3)Mn_(0.2)O_(2)/LPSCl-PEO3-LiTFSI/Li(SEI) are assembled and both exhibit high initial discharge capacity of 1221.1 mAh g^(-1)(135.8 mAh g^(-1)) and enhanced cycling stability with 81.6% capacity retention over 200 cycles at 0.05 C(89.2% over 100 cycles at 0.1 C).This work provides a new insight into the synergy of composite solid electrolyte and artificial SEI for achieving high-performance ASSLBs.
基金supported by the National High-Tech Research and Development Program of China (No.2009AA03Z116)the National Natural Science Foundation of China (No.50971020)
文摘To extend the application of carbon nanotubes (CNTs) and explore novel aluminum matrix composites,CNTs were coated by molybdenum layers using metal organic chemical vapor deposition,and then Mo-coated CNT (Mo-CNT)/Al composites were prepared by the combination processes of powder mixing and spark plasma sintering.The influences of powder mixing and Mo-CNT content on the mechanical properties and electrical conductivity of the composites were investigated.The results show that magnetic stirring is better than mechanical milling for mixing the Mo-CNTs and Al powders.The electrical conductivity of the composites decreases with increasing Mo-CNT content.When the Mo-CNT content is 0.5wt%,the tensile strength and hardness of Mo-CNT/Al reach their maximum values.The tensile strength of 0.5wt% Mo-CNT/Al increases by 29.9%,while the electrical conductivity only decreases by 7.1%,relative to sintered pure Al.The phase analysis of Mo-CNT/Al composites reveals that there is no formation of Al carbide in the composites.
文摘In order to improve the mechanical properties of polypyrrole, composites were made by electropolymerizing polypyrrole in a polyurethane matrix. Polypyrrole/polyurethane (PPY/PU) composite films containing CLO_4^-, BF_4^- or CH_3-C_6H_4-SO_3^- counter ions were made in a variety of solvent systems and characterized by SEM, electronic conductivity, FTIR, and mechanical properties. Composite films showing much greater fiexibility than pure polypyrrole were obtained, but their electronic conductivities were substantially lower. Measured eonductivities ranged from 0.001 to 8 S/cm, tensile strengths from 44 to 592 psi, and elongation to failure from 3 to 70%.
基金Project supported by the National Natural Science Foundation of China(Grant No.61306080)the Natural Science Foundation of Hunan Province,China(Grant No.2015JJ3143)the Scientific and Technological Project of Hunan Provincial Development and Reform Commission,China
文摘Flexible conductive films were fabricated from a low-temperature-cured, highly conductive composite of silver nanowires (as conducting filler) and polyvinyl alcohol (PVA, as binder). Sheet resistance of 0.12 Ω/sq, conductivity of 2.63 ×10^4 S/cm, and contact resistance of 1.0Ω/cm^2 were measured in the films, along with excellent resistance to scratch- ing and good flexibility, making them suitable electrical contact materials for flexible optoelectronic devices. Effects of curing temperature, curing duration, film thickness, and nanowire length on the film's electrical properties were studied. Due to the abundance of hydroxyl groups on its molecular chains, the addition of PVA improves the film's flexibility and resistance to scratching. Increased nanowire density and nanowire length benefit film conductance. Monte Carlo simulation was used to further explore the impact of these two parameters on the conductivity. It was observed that longer nanowires produce a higher length-ratio of conducting routes in the networks, giving better film conductivity.
基金Funded by the Natural Science Foundation of Hubei Province (No.2007ABA028)
文摘Vinylester (bismethacryloxy derivative with glass-carbon hybrid fibers (CF-GF) weight fraction of a bisphenol-A type EP resin, VE) composites of 50%, were prepared by the compress molding method. The distribution of carbon fiber in the hybrids was observed by stereomicroscope. The electrical resistance behavior of the composites filled with different carbon fiber (CF) weight contents (0.5% to 20%) was studied. The experimental results show that the electrical resistance behaviors of CF-GF/VE composites are different with those of CF/VE composites because carbon fibers' conducting networks are broken by the glass fibers in the CF-GF/VE composites. The carbon fibers distribute uniformly in the networks of glass fibers (GF) like single silk and form the semi-continuous conducting networks. Composite filled with GF-CF hybrid has a higher percolation threshold than that filled with pure CF. At that time, the resistivity of CF-GF/VE composites varies little with the temperature increasing. The temperature coefficient of resistivity in GF-CF/VE composite is less than 317 ppm and the variation of the resistivity after ten thermal cycles from 20℃ to 240 ℃is less than 1.96%.
基金This work was supported by the National Natural Science Foundation of China
文摘The potyelectrolyte of propane sulfonate(PS) grafted PPTA copolymers——PPTA-PS, PPTA[O]-PS, PPTA[C]-PS were prepared and used as electrolyte in the process of electrochemical polymerization of pyrrole to form the molecular composite polypyrrole (PPY)/Polyelectrolyte.The preparation and liquid crystalline property of three kinds of polyelectrolyte, the electrical conductivity, mechanical properties, SEM and thermoproperties of PPY/polyelectrolyte are presented in detail.
文摘The preparation of PPy/PPTA conductive composite films by electrochemical method is presented.The first step is to cast a thin layer of poly (p-phenylene-terephthalamide) (PPTA) on a slice of Pt working electrode. The second step is to electrochemically polymerize pyrrole on the PPTA/Pt working electrode. Both of the electrical conductivity and the mechanical properties of the PPy/PPTA composite film are better than those of the pure PPy film, and the film has excellent flexibility at low temperature, even in liquid nitrogen.The SEM picture of the cross-section of PPy,/PPTA composite film showed that the two components were well mixed.Cyclic voltammograms of PPy,/PPTA film in aqueous solution showed that the conductive films could be reduced and reoxidized.
基金The authors greatly acknowledge the financial support from the National Natural Science Foundation of China(No.51873126)the Fundamental Research Funds for the Central Universities,as well as the funding from the Science&Technology Department(No.2021YFH0123)of Sichuan Province.
文摘Electrically conductive elastomer composites(CECs)with segregated networks of conductive nanofillers show high potential in stretchable strain sensors due to balanced mechanical and electrical properties,yet the sensitivity at low strain is generally insufficient for practical application.Herein,we report an easy and effective way to improve the resistive response to low strain for CECs with segregated network structure via adding stiff alumina into carbon nanostructures(CNS).The CEC containing 0.7 wt%CNS and 5 wt%Al_(2)O_(3) almost sustains the same elasticity(elongation at break of~900%)and conductivity(0.8 S/m)as the control,while the piezoresistive sensitivity is significantly improved.Thermoplastic polyurethane(TPU)composites with a segregated network of hybrid nanofillers(CNS and Al_(2)O_(3))show much higher strain sensitivity(Gauge factor,GF-566)at low strain(45%strain)due to a local stress concentration effect,this sensitivity is superior to that of TPU/CNS composites(GF-11).Such a local stress concentration effect depends on alumina content and its distribution at the TPU particle interface.In addition,CECs with hybrid fillers show better reproducibility in cyclic piezoresistive behavior testing than the control.This work offers an easy method for fabricating CECs with a segregated filler network offering stretchable strain sensors with a high strain sensitivity.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2021R1A2C1008380)Nano Material Technology Development Program[NRF-2015M3A7B6027970]+1 种基金the Chey Institute for Advanced Studies'International Scholar Exchange Fellowship for the academic year of 2021-2022supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)grant funded by the Korea government(MOTIE)(20215710100170).
文摘Wearable and stretchable strain sensors have potential values in the fields of human motion and health monitoring,flexible electronics,and soft robotic skin.The wearable and stretchable strain sensors can be directly attached to human skin,providing visualized detection for human motions and personal healthcare.Conductive polymer composites(CPC)composed of conductive fillers and flexible polymers have the advantages of high stretchability,good flexibility,superior durability,which can be used to prepare flexible strain sensors with large working strain and outstanding sensitivity.This review has put forward a comprehensive summary on the fabrication methods,advanced mechanisms and strain sensing abilities of CPC strain sensors reported in recent years,especially the sensors with superior performance.Finally,the structural design,bionic function,integration technology and further application of CPC strain sensors are prospected.
基金Project(ZZYJKT2019-05)supported by State Key Laboratory of High Performance Complex Manufacturing,ChinaProject(51605497)supported by the National Natural Science Foundation of ChinaProject(2020CX05)supported by Innovation-Driven Project of Central South University,China。
文摘Conductive polymer composites(CPCs)are widely used in the flexible strain sensors due to their simple fabrication process and controllable sensing properties.However,temperature has a significance impact on the strain sensing performance of CPCs.In this paper,the strain sensing characteristics of MWCNTs/PDMS composites under temperature loading were systematically studied.It was found that the sensitivity decreased with the increase of temperature and the phenomenon of shoulder peak also decreased.Based on the theory of polymer mechanics,it was found that temperature could affect the conductive network by changing the motion degree of PDMS molecular chain,resulting in the change of sensing characteristics.Finally,a mathematical model of the resistance against loading condition(strain and temperature),associated with the force−electrical equivalent relationship of composites,was established to discuss the experimental results as well as the sensing mechanism.The results presented in this paper was believed helpful for the further application of strain sensors in different temperature conditions.