Marine sediments represent a major carbon reservoir on Earth.Dissolved organic matter(DOM)in pore waters accumulates products and intermediates of carbon cycling in sediments.The application of excitation-emission mat...Marine sediments represent a major carbon reservoir on Earth.Dissolved organic matter(DOM)in pore waters accumulates products and intermediates of carbon cycling in sediments.The application of excitation-emission matrix spectroscopy(EEMs)in the analysis of subseafloor DOM samples is largely unexplored due to the redox-sensitive matrix of anoxic pore water.Therefore,this study aims to investigate the interference caused by the matrix on EEMs and propose a guideline to prepare pore water samples from anoxic marine sediments.The parameters determined by fluorescence spectra include 3D-index derived from EEMs after parallel factor analysis(PARAFAC),fluorescence index(FI)(contribution of terrigenous DOM),biological index(BIX)and humification index(HIX)derived from 2D emission spectra.First,we investigated the impacts of extensively-presented ions as typical electron acceptors,which are utilized by anaerobic microbes and stratified in marine sediments:Fe(II),Fe(III),Mn(II)and sulfide in anoxic pore water resulted in biases of fluorescent signals.We proposed threshold concentrations of these ions when the interference on EEMs occurred.Effective removal of sulfide from sulfide-rich samples could be achieved by flushing with N_(2)for 2 min.Second,the tests based on DOM standard were further verified using pristine samples from marine sediments.There was a significant change in the fluorescence spectra of DOM in anoxic sediments from the Rhône Delta.This study demonstrated that the change was caused by oxidation of the matrix rather than the intrinsic alteration of DOM.It was confirmed by extracted DOM via both EEMs analysis and Fourier transform ion cyclotron resonance mass spectrometry(FT-ICR-MS).Slight oxidation of sulfur-containing compounds(e.g.,sulfhydryl)and polyphenol-like compounds occurred.Finally,a sample preparation sequence is proposed for pore water from anoxic sediments.This method enables measurement with small volumes of the sample(e.g.,50µL in this study)and ensures reliable data without the interference of the redox-sensitive matrix.This study provides access to the rapid analysis of DOM composition in marine sediments and can potentially open a window into examining the carbon cycling of the marine deep biosphere.展开更多
This study reports the geochemical characteristics of zinc (Zn), copper (Cu), lead (Pb), nickel (Ni), mercury (Hg), iron (Fe), and manganese (Mn) in the riparian sediment pore water of the Songhua River, Northeast Chi...This study reports the geochemical characteristics of zinc (Zn), copper (Cu), lead (Pb), nickel (Ni), mercury (Hg), iron (Fe), and manganese (Mn) in the riparian sediment pore water of the Songhua River, Northeast China. In total, 36 pore water samples and 18 surface water samples from three typical sections were collected and analyzed in June 2009. Cluster analysis of heavy metals was performed to analyze the pollution sources of the metals. Results showed that Hg concentrations in the pore water were greater than those in the surface water, indicating a potential ability of Hg release from riparian sediment system to river water. However, concentrations of Fe and Mn in the surface water were greater than those in the pore water, demonstrating that the microenvironments of riparian and riverbed sediment systems were quite different. Variations of Zn, Cu, Pb and Ni between the surface and the pore water were different in each section. Most metals had similar horizontal and profile distribution characteristics in the three sections except for Zn and Ni. Hg, Fe and Mn concentrations in the pore water increased gradually with the increase in horizontal distance from water body, in contrast to this, Cu decreased, and Pb presented a fluctuating trend. With the increase in depth, Pb and Fe, Cu and Mn showed the same trends, and Hg showed a variable trend. The above distribution characteristics could mainly be attributed to the properties and the interactions of metals, pH and oxidation-reduction conditions, and the complex pollution sources and hydrologic regime in history. The probable sources of metals include the historical and ongoing discharge of industrial wastewater, mining activities, sewage irrigation for agricultural production, and atmospheric deposition from coal-fired plants.展开更多
Sediment layers containing contaminants play a significant role in environmental hydrodynamics. Experiments were conducted in order to characterize the relative roles of resuspended particles and pore water under diff...Sediment layers containing contaminants play a significant role in environmental hydrodynamics. Experiments were conducted in order to characterize the relative roles of resuspended particles and pore water under different flow and sediment conditions. A conservative tracer (NaC1) and a reactive tracer (phosphate) were used as contaminants in the bottom sediment in a laboratory flume. The mixing between the overlying water and pore water occurred over a short time while the desorption of contaminants from fine-grained resuspended particles lasted a relatively long time. The effects of resuspended particles and pore water on the variations of release flux and concentration of contaminants in water with time under different hydrodynamic conditions were quantified. The results show that pore water dominated the initial release flux, which could be several orders of magnitude greater than the flux due to molecular diffusion. Flux contribution of desorption from sediment particles in the latter release could be equal to what was seen from pore water in the initial stage.展开更多
The early diagenesis processes of several redox-sensitive trace metals(RSMs)(Mo, U and V) were studied with several short sediment cores(~25 cm) collected in the northern Okinawa Trough(OT). Pore water vertical profil...The early diagenesis processes of several redox-sensitive trace metals(RSMs)(Mo, U and V) were studied with several short sediment cores(~25 cm) collected in the northern Okinawa Trough(OT). Pore water vertical profiles indicated that the sedimentary environments in all cores were between oxic and suboxic, not yet reaching anoxic sulfidic conditions. The recycling process of Mo in sediments was clearly associated with Mn and yielded little authigenic accumulation, while U showed a downcore increase in sediment and its authigenic mass accumulation rate(MAR) was estimated to be ~23% of the Changjiang(Yangtze) and Huanghe(Yellow) riverine flux. Benthic diffusive fluxes and MAR were calculated and the comparison of them showed that U and V fluxes matched relatively well both in direction and in magnitude, implying that diffusion processes at the sedimentwater interface is the dominant process controlling the remobilization or burial of V and U in northern OT. This work provided a systematic study(both in pore water and solid phase) on the RSMs geochemical behaviors during early diagenesis process, yielding a quantitative assessment of the remobilization or burial fluxes of the RSMs in northern OT. Such studies are in general lacking in the coastal margin of Northwest Pacific Ocean.展开更多
The water, pore water, sediment, and fish samples were collected from the Hongfeng Reservoir in No- vember 2003 and February 2004 in accordance with trace metal protocols. The average concentrations of total mer- cury...The water, pore water, sediment, and fish samples were collected from the Hongfeng Reservoir in No- vember 2003 and February 2004 in accordance with trace metal protocols. The average concentrations of total mer- cury (THg), dissolved mercury (DHg), reactive mercury, dissolved gaseous mercury, total methylmercury, and dis- solved methylmercury in the water columns were 8.00, 5.70, 0.63, 0.05, 0.16, and 0.07 ng/L, respectively. THg and DHg in the water columns, THg in pore water and THg in lake sediments of the Hongfeng Reservoir showed the level of mercury in the Hongfeng Reservoir was higher than in other natural waters in the world due to the loading of a lot of waste water with relatively high concentrations of mercury, whereas methylmercury concentrations in fish (wet weight) varied from 1.73–51.00 ng/g, much lower than in most remote lakes and reservoirs reported in northern Europe and North America. Methylmercury distributions in pore water and sediments showed methylation oc- curred mainly in the upper several centimeters of sediment cores in the Hongfeng Reservoir. The concentrations of dissolved organic carbon, total suspended particles, total Hg, and methylmercury were higher at Houwu than those at Daba in November 2003. It is suggested that other pollutants such as N and P from fishing farm and other waste water at Houwu,which resulted in deterioration of water quality, affected the concentrations and distributions of mercury species in the reservoir.展开更多
An overview of the recent findings about the chemo-hydro-mechanical behaviour of materials used for both geological and engineered barriers in nuclear waste disposal is presented, through some examples about the natur...An overview of the recent findings about the chemo-hydro-mechanical behaviour of materials used for both geological and engineered barriers in nuclear waste disposal is presented, through some examples about the natural Boom Clay (BC) and compacted bentonite-based materials. For the natural BC, it was found that compression index identified from both oedometer and isotropic compression tests is sim- ilar and the compressibility of BC from the Mol site is higher than that of BC from the Essen site: the shear strength of Mol BC is also higher than that of the Essen BC, suggesting a significant effect of carbo- nates content; the thermal volume change is strongly overconsolidation ratio (OCR) dependent-low OCR values promote thermal contraction while high OCR values favour thermal dilation; the volume change behaviour is also strongly time dependent and this time dependent behaviour is governed by the stress level and temperature; the effect of pore-water salinity on the volume change behaviour can be signif- icant when the smectite content is relatively high. For the bentonite-based materials, it was found that thermal contraction also occurs at low OCR values, but this is suction dependent--suction promotes ther- mal dilation. Under constant volume conditions, wetting results in a decrease of hydraulic conductivity, followed by an increase. This is found to be related to changes in macro-pores size-wetting induces a decrease of macro-pores size, followed by an increase due to the aggregates fissuring. The presence of technological voids can increase the hydraulic conductivity but does not influence the swelling pressure.展开更多
Understanding solute transport behaviors of deep soil profile in the Loess Plateau is helpful for ecological construction and agricultural production improvement. In this study, solute transport processes of a deep so...Understanding solute transport behaviors of deep soil profile in the Loess Plateau is helpful for ecological construction and agricultural production improvement. In this study, solute transport processes of a deep soil profile were measured by a conservative tracer experiment using 25 undisturbed soil cores (20 cm long and 7 cm diameter for each) continuously sampled from the surface downward to the depth of 500 cm in the Loess Plateau of China. The solute transport breakthrough curves (BTCs) were analyzed in terms of the convection-dispersion equation (CDE) and the mobile-immobile model (MIM). Average pore-water velocity and dispersion coefficient (or effective dispersion coefficient) were calculated using the CDE and MIM. Basic soil properties and water infiltration parameters were also determined to explore their influence on the solute transport parameters. Both pore-water velocity and dispersion coefficient (or effective dispersion coefficient) generally decreased with increasing depth, and the dispersivity fluctuated along the soil profile. There was a good linear correlation between log-transformed pore-water velocity and dispersion coefficient, with a slope of about 1.0 and an average dispersivity of 0.25 for the entire soil profile. Generally speaking, the soil was more homogeneous along the soil profile. Our results also show that hydrodynamic dispersion is the dominant mechanism of solute transport of loess soils in the study area.展开更多
There are so many shaly sand conduction models, and most of them are only used in some local area, and have their limitations. So far, there is no theoretical model that can be used commonly and efficiently .In this p...There are so many shaly sand conduction models, and most of them are only used in some local area, and have their limitations. So far, there is no theoretical model that can be used commonly and efficiently .In this paper, based on some existing models, and combining with the knowledge of the researched area, we designed out a new conduction model. The total conductivity of the rock is the combining result from free water in inter granular porous, micro pore water and the clay bound water. It can well describe many electric conduction characteristics of shaly sand. In order to make it useable in practice, we also provide some methods for interpreting the pore components with comprehensive logging data.展开更多
Sediment is a principal reservoir which accumulates and releases the pollutants. It is an important way of nutrients releasing from pore water of sediments to overlying water across the sediment-water interface. Five ...Sediment is a principal reservoir which accumulates and releases the pollutants. It is an important way of nutrients releasing from pore water of sediments to overlying water across the sediment-water interface. Five sampling sites were selected in the Hengshui Lake. Overlying water and sediments were collected in each of them. The phosphorus fractions and their relationships were analyzed. The results showed that the change of the total phosphorus (TP) in sediment was similar to that of the total dissolved phosphorus (TDP) and soluble orthophosphate (PO4^3-) in pore water. The concentrations of PO4^3- in pore water were higher than those in overlying water, reflecting a possible diffuse trend for PO4^3-P in the five zones of Hengshui Lake. It is indicated that phosphorus and other nutrients will be transferred from sediment to pore water and then to overlying water, which can lead to lake eutrophication.展开更多
A wave flume simulator was used to study internal nitrogen release from the surface sediment collected from Taihu Lake, China. Particulate nitrogen concentrations were positively correlated with the concentrations of ...A wave flume simulator was used to study internal nitrogen release from the surface sediment collected from Taihu Lake, China. Particulate nitrogen concentrations were positively correlated with the concentrations of suspended solids, primarily from surface erosion related to the shear stress and duration of wave action. In response to 4 cm- and 10 cm-high wave production representing waves generated in Taihu Lake by gentle and gusty winds, respectively, the mean dynamic release rate of ammonium (NH4+) from the sediment to the overlying water was 1 × 10-3 mg/(m2.s) and the NH4+ concentration in the overlying water increased by 0.016 mg/L, indicating that waves resulting from strong wind can induce the rapid release of dissolved nitrogen from Taihu Lake sediments. The decrease in interstitial NH4+ concentrations at all sediment depths was associated with an increase in NH4+ concentrations in the overlying water by 0.01 mg/L, showing that sediment below the eroded layer was the main source of internal nitrogen release. Changes in the interstitial dissolved oxygen and NH4+ concentrations showed that wave-induced pore water movement can greatly increase the diffusion rate, and that these 15 cm. Diffusion induced by pore water movement sediment layer in Taihu Lake. effects can influence the sediment to a depth of at least may be very important for the formation of an active展开更多
The objective of this study was to investigate the spatial relationship between the most likely distribution of saturated hydraulic conductivity(Ks) and the observed pressure head(P) distribution within a hillslope. T...The objective of this study was to investigate the spatial relationship between the most likely distribution of saturated hydraulic conductivity(Ks) and the observed pressure head(P) distribution within a hillslope. The cross-correlation analysis method was used to investigate the effects of the variance of ln Ks, spatial structure anisotropy of ln Ks, and vertical infiltration flux(q) on P at some selected locations within the hillslope. The cross-correlation analysis shows that, in the unsaturated region with a uniform flux boundary, the dominant correlation between P and Ksis negative and mainly occurs around the observation location of P. A relatively high P value is located in a relatively low Kszone, while a relatively low P value is located in a relatively high Kszone. Generally speaking, P is positively correlated with q/Ksat the same location in the unsaturated region. In the saturated region, the spatial distribution of Kscan significantly affect the position and shape of the phreatic surface. We therefore conclude that heterogeneity can cause some parts of the hillslope to be sensitive to external hydraulic stimuli(e.g., rainfall and reservoir level change), and other parts of the hillslope to be insensitive. This is crucial to explaining why slopes with similar geometries would show different responses to the same hydraulic stimuli, which is significant to hillslope stability analysis.展开更多
Nitrogen in pond sediments is a major water quality concern and can impact the productivity of aquaculture.Dissolved oxygen is an important factor for improving water quality and boosting fish growth in aquaculture po...Nitrogen in pond sediments is a major water quality concern and can impact the productivity of aquaculture.Dissolved oxygen is an important factor for improving water quality and boosting fish growth in aquaculture ponds,and plays an important role in the conversion of ammonium-nitrogen(NH4-N)to nitrite-nitrogen(NO2--N)and eventually nitrate-nitrogen(NO3--N).A central goal of the study was to identify the best aeration method and strategy for improving water quality in aquaculture ponds.We conducted an experiment with six tanks,each with a different aeration mode to simulate the behavior of aquaculture ponds.The results show that a 36 hr aeration interval(Tc=36 hr:36 hr)and no aeration resulted in high concentrations of NH4-N in the water column.Using a 12 hr interval time(Tc=12 hr:12 hr)resulted in higher NO2--N and NO3--N concentrations than any other aeration mode.Results from an 8 hr interval time(Tc=8 hr:8 hr)and 24 hr interval time(Tc=24 hr:24 hr)were comparable with those of continuous aeration,and had the benefit of being in use for only half of the time,consequently reducing energy consumption.展开更多
Based on the research into the physical-chemical properties and distribution of sediments and the characteristics of pore water in sediments of Miyun reservoir, the release flux of the total phosphorus (TP) from sedim...Based on the research into the physical-chemical properties and distribution of sediments and the characteristics of pore water in sediments of Miyun reservoir, the release flux of the total phosphorus (TP) from sediments is estimated by simulating deposit environment of reservoir bottom in laboratory. They are 0.018 mg·cm-2·d-1 and 0.821 mg·cm-2·d-1 at 2℃ and 8℃ respectively. The gross TP released in a year is 11.34t. As a contrast, the pore water diffusion simulation method is used to measure gross TP released and gains 11.56t. The two results are relatively close and prove that experiment simulation has some reliability. On the basis of experiments, some conclusions can be drawn: (1) Endogenous phosphorus from sediments accounts for 27.9 percent of the TP entering the reservoir, and it cannot be ignored; and (2) increasing temperature is helpful to TP releasing from sediments.展开更多
Sediments in many rivers and lakes are subjected to resuspension due to a combination of hydrodynamics. However, the roles of contaminant-contained dissolved and particulate sediments during the resuspension release a...Sediments in many rivers and lakes are subjected to resuspension due to a combination of hydrodynamics. However, the roles of contaminant-contained dissolved and particulate sediments during the resuspension release are rarely studied. This study focuses on the release quantity of contaminants in both water phase and solid phase. Conservative tracer (NaC1) and reactive tracer (Phosphorus) were respectively added to cohesive fine-grained sediments and non-cohesive coarse-grained sediments. A range of typical shear stress was conducted to characterize the time-depended release of contaminants in a laboratory flume. When the sediment started to move, the concentration of contaminant in the overlying water increased with the bed shear stress, but the dissolved contaminants responded faster than the particulate ones. The observed contaminant release process can be divided into three main stages: the initial two hours fast mixing: the release contribution of pore water could reach up to 75%; the middle 4-6 h adsorption: the partitioning coefficient of contaminant between water phase and solid phase decreased over the time, and the adsorption of contaminates from resuspended sediment dominated the negative release; the last equilibrium stage: the desorption and adsorption reached equilibrium, and the reactive contaminant made an impact on the water quality in the solid phase. The existing formulas to evaluate the release flux are far from practice meaning as the sediment contaminants undergo a very complex release process.展开更多
Three cruises were launched in the Pearl River Estuary (PRE) in 2005 to investigate the biogeochemical cycling of nutrients associated with early diagenesis related to degradation of organic matter. Seasonal and spa...Three cruises were launched in the Pearl River Estuary (PRE) in 2005 to investigate the biogeochemical cycling of nutrients associated with early diagenesis related to degradation of organic matter. Seasonal and spatial variations of pore water nutrient concentrations and profile patterns in sediments were studied. Nutrient fluxes at the sediment-water interface (SWI) were measured by incu- bation experiments, and we here discussed the accumulation and transformation processes of nutrients at the SWI. The nutrients generally decreased from the Pearl River outlets downstream, indicating an- thropogenic influences on the nutrient inputs in the estuary. NO3-N concentration was the highest of the three forms of DIN (dissolved inorganic nitrogen, the sum of NH4-N, NO3-N and NO2-N) in the overly- ing water, and NH4-N was the main component of DIN in pore water. The gradual increase of NH4-N and the rapid decrease of NO3-N with sediment depth provided the evidence for anaerobic conditions below the SWI. Negative fluxes of NO3-N and positive fluxes of NH4-N were commonly observed, sug- gesting the denitrification of NO3-N at the SWL The DIN flux direction suggested that the sediment was the sink of DIN in spring, however, the sediment was generally the source of DIN in summer and winter. PO4-P distribution patterns were distinct while SiO4-Si inconspicuously varied in sediment profiles in different seasons. The flux results indicated that PO4-P mainly diffused from the water column to the sediment while SiO4-Si mainly diffused from the sediment to the water column. Generally, the incu- bated fluxes were the coupling of diffusion, bioturbation and biochemical reactions, and were relatively accurate in this study.展开更多
After the pollutant discharged into the river or lake has been reduced, the release of the contaminant from the sediment to the overlying water may cause the river and lake be contaminated again. On the condition that...After the pollutant discharged into the river or lake has been reduced, the release of the contaminant from the sediment to the overlying water may cause the river and lake be contaminated again. On the condition that the overlying water flow does not lead to sediment suspension, numerical researches are carried out for the mechanism of contaminant release through the sedimentoverlying water interface. The overlying water flow is calculated as turbulence. The sediment is regarded as isotropic homogeneous porous medium, therefore the seepage field in the porous sediment layer is obtained by solving Darcy's equations. Coupled two dimensional steady flows of the overlying water and the pore water in the sediment are calculated. Based on the flow fields obtained, the unsteady contaminant solute transportation process in the pore water in the sediment and the overlying water is numerically simulated, as the shapes of the sediment-overlying water interface are flat or periodic triangular respectively. Numerical results show that the exchange of the pore water and the overlying water is an important factor which decides the release flux of the contaminant from the sediment to the overlying water. The pressure distribution produced by the overlying water flow along the sedimentoverlying water interface, as it is not flat, may induce the seepage of the pore water in the sediment and through the sedimentoverlying water interface, which may increase the release flux of the contaminant from the sediment to the overlying water.展开更多
基金The European Union’s Seventh Framework Programme—Ideas Specific Programme under contract No.247153(Advanced Grant DARCLIFEPrincipal Investigator,K.-U.)+2 种基金the Fund of the Deutsche Forschungsgemeinschaft through the Research Center/Excellence Cluster MARUM—Center for Marine Environmental Sciences,Project GB2the Fund of China Scholarship Councilthe Fund of Bremen International Graduate School for Marine Sciences.
文摘Marine sediments represent a major carbon reservoir on Earth.Dissolved organic matter(DOM)in pore waters accumulates products and intermediates of carbon cycling in sediments.The application of excitation-emission matrix spectroscopy(EEMs)in the analysis of subseafloor DOM samples is largely unexplored due to the redox-sensitive matrix of anoxic pore water.Therefore,this study aims to investigate the interference caused by the matrix on EEMs and propose a guideline to prepare pore water samples from anoxic marine sediments.The parameters determined by fluorescence spectra include 3D-index derived from EEMs after parallel factor analysis(PARAFAC),fluorescence index(FI)(contribution of terrigenous DOM),biological index(BIX)and humification index(HIX)derived from 2D emission spectra.First,we investigated the impacts of extensively-presented ions as typical electron acceptors,which are utilized by anaerobic microbes and stratified in marine sediments:Fe(II),Fe(III),Mn(II)and sulfide in anoxic pore water resulted in biases of fluorescent signals.We proposed threshold concentrations of these ions when the interference on EEMs occurred.Effective removal of sulfide from sulfide-rich samples could be achieved by flushing with N_(2)for 2 min.Second,the tests based on DOM standard were further verified using pristine samples from marine sediments.There was a significant change in the fluorescence spectra of DOM in anoxic sediments from the Rhône Delta.This study demonstrated that the change was caused by oxidation of the matrix rather than the intrinsic alteration of DOM.It was confirmed by extracted DOM via both EEMs analysis and Fourier transform ion cyclotron resonance mass spectrometry(FT-ICR-MS).Slight oxidation of sulfur-containing compounds(e.g.,sulfhydryl)and polyphenol-like compounds occurred.Finally,a sample preparation sequence is proposed for pore water from anoxic sediments.This method enables measurement with small volumes of the sample(e.g.,50µL in this study)and ensures reliable data without the interference of the redox-sensitive matrix.This study provides access to the rapid analysis of DOM composition in marine sediments and can potentially open a window into examining the carbon cycling of the marine deep biosphere.
基金Under the auspices of National Natural Science Foundation of China (No. 40901128, 40771035)Knowledge Innova-tion Programs of Chinese Academy of Sciences (No. KZCX2-YW-Q06-03)
文摘This study reports the geochemical characteristics of zinc (Zn), copper (Cu), lead (Pb), nickel (Ni), mercury (Hg), iron (Fe), and manganese (Mn) in the riparian sediment pore water of the Songhua River, Northeast China. In total, 36 pore water samples and 18 surface water samples from three typical sections were collected and analyzed in June 2009. Cluster analysis of heavy metals was performed to analyze the pollution sources of the metals. Results showed that Hg concentrations in the pore water were greater than those in the surface water, indicating a potential ability of Hg release from riparian sediment system to river water. However, concentrations of Fe and Mn in the surface water were greater than those in the pore water, demonstrating that the microenvironments of riparian and riverbed sediment systems were quite different. Variations of Zn, Cu, Pb and Ni between the surface and the pore water were different in each section. Most metals had similar horizontal and profile distribution characteristics in the three sections except for Zn and Ni. Hg, Fe and Mn concentrations in the pore water increased gradually with the increase in horizontal distance from water body, in contrast to this, Cu decreased, and Pb presented a fluctuating trend. With the increase in depth, Pb and Fe, Cu and Mn showed the same trends, and Hg showed a variable trend. The above distribution characteristics could mainly be attributed to the properties and the interactions of metals, pH and oxidation-reduction conditions, and the complex pollution sources and hydrologic regime in history. The probable sources of metals include the historical and ongoing discharge of industrial wastewater, mining activities, sewage irrigation for agricultural production, and atmospheric deposition from coal-fired plants.
基金supported by the National Natural Science Foundation of China(Grants No.10972134 and 11032007)
文摘Sediment layers containing contaminants play a significant role in environmental hydrodynamics. Experiments were conducted in order to characterize the relative roles of resuspended particles and pore water under different flow and sediment conditions. A conservative tracer (NaC1) and a reactive tracer (phosphate) were used as contaminants in the bottom sediment in a laboratory flume. The mixing between the overlying water and pore water occurred over a short time while the desorption of contaminants from fine-grained resuspended particles lasted a relatively long time. The effects of resuspended particles and pore water on the variations of release flux and concentration of contaminants in water with time under different hydrodynamic conditions were quantified. The results show that pore water dominated the initial release flux, which could be several orders of magnitude greater than the flux due to molecular diffusion. Flux contribution of desorption from sediment particles in the latter release could be equal to what was seen from pore water in the initial stage.
基金The National Key Basic Research Program of China under contract No.2013CB429704the NSFC-Shandong Joint Fund for Marine Science Research Centers under contract No.U1606401+1 种基金the National Natural Science Foundation of China under contract No.41776095the National Program on Global Change and Air-Sea Interaction under contract No.GASI-GEOGE-03
文摘The early diagenesis processes of several redox-sensitive trace metals(RSMs)(Mo, U and V) were studied with several short sediment cores(~25 cm) collected in the northern Okinawa Trough(OT). Pore water vertical profiles indicated that the sedimentary environments in all cores were between oxic and suboxic, not yet reaching anoxic sulfidic conditions. The recycling process of Mo in sediments was clearly associated with Mn and yielded little authigenic accumulation, while U showed a downcore increase in sediment and its authigenic mass accumulation rate(MAR) was estimated to be ~23% of the Changjiang(Yangtze) and Huanghe(Yellow) riverine flux. Benthic diffusive fluxes and MAR were calculated and the comparison of them showed that U and V fluxes matched relatively well both in direction and in magnitude, implying that diffusion processes at the sedimentwater interface is the dominant process controlling the remobilization or burial of V and U in northern OT. This work provided a systematic study(both in pore water and solid phase) on the RSMs geochemical behaviors during early diagenesis process, yielding a quantitative assessment of the remobilization or burial fluxes of the RSMs in northern OT. Such studies are in general lacking in the coastal margin of Northwest Pacific Ocean.
基金the National Natural Science Foundation of China(Grant No.405320514);the Chinese Academy of Sciences(KZCX3-SW443).
文摘The water, pore water, sediment, and fish samples were collected from the Hongfeng Reservoir in No- vember 2003 and February 2004 in accordance with trace metal protocols. The average concentrations of total mer- cury (THg), dissolved mercury (DHg), reactive mercury, dissolved gaseous mercury, total methylmercury, and dis- solved methylmercury in the water columns were 8.00, 5.70, 0.63, 0.05, 0.16, and 0.07 ng/L, respectively. THg and DHg in the water columns, THg in pore water and THg in lake sediments of the Hongfeng Reservoir showed the level of mercury in the Hongfeng Reservoir was higher than in other natural waters in the world due to the loading of a lot of waste water with relatively high concentrations of mercury, whereas methylmercury concentrations in fish (wet weight) varied from 1.73–51.00 ng/g, much lower than in most remote lakes and reservoirs reported in northern Europe and North America. Methylmercury distributions in pore water and sediments showed methylation oc- curred mainly in the upper several centimeters of sediment cores in the Hongfeng Reservoir. The concentrations of dissolved organic carbon, total suspended particles, total Hg, and methylmercury were higher at Houwu than those at Daba in November 2003. It is suggested that other pollutants such as N and P from fishing farm and other waste water at Houwu,which resulted in deterioration of water quality, affected the concentrations and distributions of mercury species in the reservoir.
文摘An overview of the recent findings about the chemo-hydro-mechanical behaviour of materials used for both geological and engineered barriers in nuclear waste disposal is presented, through some examples about the natural Boom Clay (BC) and compacted bentonite-based materials. For the natural BC, it was found that compression index identified from both oedometer and isotropic compression tests is sim- ilar and the compressibility of BC from the Mol site is higher than that of BC from the Essen site: the shear strength of Mol BC is also higher than that of the Essen BC, suggesting a significant effect of carbo- nates content; the thermal volume change is strongly overconsolidation ratio (OCR) dependent-low OCR values promote thermal contraction while high OCR values favour thermal dilation; the volume change behaviour is also strongly time dependent and this time dependent behaviour is governed by the stress level and temperature; the effect of pore-water salinity on the volume change behaviour can be signif- icant when the smectite content is relatively high. For the bentonite-based materials, it was found that thermal contraction also occurs at low OCR values, but this is suction dependent--suction promotes ther- mal dilation. Under constant volume conditions, wetting results in a decrease of hydraulic conductivity, followed by an increase. This is found to be related to changes in macro-pores size-wetting induces a decrease of macro-pores size, followed by an increase due to the aggregates fissuring. The presence of technological voids can increase the hydraulic conductivity but does not influence the swelling pressure.
基金supported by the National Natural Science Foundation of China(41571130081,41530854)
文摘Understanding solute transport behaviors of deep soil profile in the Loess Plateau is helpful for ecological construction and agricultural production improvement. In this study, solute transport processes of a deep soil profile were measured by a conservative tracer experiment using 25 undisturbed soil cores (20 cm long and 7 cm diameter for each) continuously sampled from the surface downward to the depth of 500 cm in the Loess Plateau of China. The solute transport breakthrough curves (BTCs) were analyzed in terms of the convection-dispersion equation (CDE) and the mobile-immobile model (MIM). Average pore-water velocity and dispersion coefficient (or effective dispersion coefficient) were calculated using the CDE and MIM. Basic soil properties and water infiltration parameters were also determined to explore their influence on the solute transport parameters. Both pore-water velocity and dispersion coefficient (or effective dispersion coefficient) generally decreased with increasing depth, and the dispersivity fluctuated along the soil profile. There was a good linear correlation between log-transformed pore-water velocity and dispersion coefficient, with a slope of about 1.0 and an average dispersivity of 0.25 for the entire soil profile. Generally speaking, the soil was more homogeneous along the soil profile. Our results also show that hydrodynamic dispersion is the dominant mechanism of solute transport of loess soils in the study area.
文摘There are so many shaly sand conduction models, and most of them are only used in some local area, and have their limitations. So far, there is no theoretical model that can be used commonly and efficiently .In this paper, based on some existing models, and combining with the knowledge of the researched area, we designed out a new conduction model. The total conductivity of the rock is the combining result from free water in inter granular porous, micro pore water and the clay bound water. It can well describe many electric conduction characteristics of shaly sand. In order to make it useable in practice, we also provide some methods for interpreting the pore components with comprehensive logging data.
文摘Sediment is a principal reservoir which accumulates and releases the pollutants. It is an important way of nutrients releasing from pore water of sediments to overlying water across the sediment-water interface. Five sampling sites were selected in the Hengshui Lake. Overlying water and sediments were collected in each of them. The phosphorus fractions and their relationships were analyzed. The results showed that the change of the total phosphorus (TP) in sediment was similar to that of the total dissolved phosphorus (TDP) and soluble orthophosphate (PO4^3-) in pore water. The concentrations of PO4^3- in pore water were higher than those in overlying water, reflecting a possible diffuse trend for PO4^3-P in the five zones of Hengshui Lake. It is indicated that phosphorus and other nutrients will be transferred from sediment to pore water and then to overlying water, which can lead to lake eutrophication.
基金Supported by the National Natural Science Foundation of China(Nos.41101458, 40825004,40871095,40801200)the Major Project for National Science and Technology Development(No.2010ZX03006-006)the "100-Talent Project" of Chinese Academy of Sciences,China(No.YOBROB045)
文摘A wave flume simulator was used to study internal nitrogen release from the surface sediment collected from Taihu Lake, China. Particulate nitrogen concentrations were positively correlated with the concentrations of suspended solids, primarily from surface erosion related to the shear stress and duration of wave action. In response to 4 cm- and 10 cm-high wave production representing waves generated in Taihu Lake by gentle and gusty winds, respectively, the mean dynamic release rate of ammonium (NH4+) from the sediment to the overlying water was 1 × 10-3 mg/(m2.s) and the NH4+ concentration in the overlying water increased by 0.016 mg/L, indicating that waves resulting from strong wind can induce the rapid release of dissolved nitrogen from Taihu Lake sediments. The decrease in interstitial NH4+ concentrations at all sediment depths was associated with an increase in NH4+ concentrations in the overlying water by 0.01 mg/L, showing that sediment below the eroded layer was the main source of internal nitrogen release. Changes in the interstitial dissolved oxygen and NH4+ concentrations showed that wave-induced pore water movement can greatly increase the diffusion rate, and that these 15 cm. Diffusion induced by pore water movement sediment layer in Taihu Lake. effects can influence the sediment to a depth of at least may be very important for the formation of an active
基金supported by the China Scholarship Council(Grant No.201406410032)the National Natural Science Foundation of China(Grant No.41172282)+2 种基金the Strategic Environmental Research and Development Program(Grant No.ER-1365)the Environmental Security and Technology Certification Program(Grant No.ER201212)the National Science FoundationDivision of Earth Sciences(Grant No.1014594)
文摘The objective of this study was to investigate the spatial relationship between the most likely distribution of saturated hydraulic conductivity(Ks) and the observed pressure head(P) distribution within a hillslope. The cross-correlation analysis method was used to investigate the effects of the variance of ln Ks, spatial structure anisotropy of ln Ks, and vertical infiltration flux(q) on P at some selected locations within the hillslope. The cross-correlation analysis shows that, in the unsaturated region with a uniform flux boundary, the dominant correlation between P and Ksis negative and mainly occurs around the observation location of P. A relatively high P value is located in a relatively low Kszone, while a relatively low P value is located in a relatively high Kszone. Generally speaking, P is positively correlated with q/Ksat the same location in the unsaturated region. In the saturated region, the spatial distribution of Kscan significantly affect the position and shape of the phreatic surface. We therefore conclude that heterogeneity can cause some parts of the hillslope to be sensitive to external hydraulic stimuli(e.g., rainfall and reservoir level change), and other parts of the hillslope to be insensitive. This is crucial to explaining why slopes with similar geometries would show different responses to the same hydraulic stimuli, which is significant to hillslope stability analysis.
基金supported by the National Science Foundation of China(No.51579106)financial support from the China Scholarship Council(No.201806150070)
文摘Nitrogen in pond sediments is a major water quality concern and can impact the productivity of aquaculture.Dissolved oxygen is an important factor for improving water quality and boosting fish growth in aquaculture ponds,and plays an important role in the conversion of ammonium-nitrogen(NH4-N)to nitrite-nitrogen(NO2--N)and eventually nitrate-nitrogen(NO3--N).A central goal of the study was to identify the best aeration method and strategy for improving water quality in aquaculture ponds.We conducted an experiment with six tanks,each with a different aeration mode to simulate the behavior of aquaculture ponds.The results show that a 36 hr aeration interval(Tc=36 hr:36 hr)and no aeration resulted in high concentrations of NH4-N in the water column.Using a 12 hr interval time(Tc=12 hr:12 hr)resulted in higher NO2--N and NO3--N concentrations than any other aeration mode.Results from an 8 hr interval time(Tc=8 hr:8 hr)and 24 hr interval time(Tc=24 hr:24 hr)were comparable with those of continuous aeration,and had the benefit of being in use for only half of the time,consequently reducing energy consumption.
文摘Based on the research into the physical-chemical properties and distribution of sediments and the characteristics of pore water in sediments of Miyun reservoir, the release flux of the total phosphorus (TP) from sediments is estimated by simulating deposit environment of reservoir bottom in laboratory. They are 0.018 mg·cm-2·d-1 and 0.821 mg·cm-2·d-1 at 2℃ and 8℃ respectively. The gross TP released in a year is 11.34t. As a contrast, the pore water diffusion simulation method is used to measure gross TP released and gains 11.56t. The two results are relatively close and prove that experiment simulation has some reliability. On the basis of experiments, some conclusions can be drawn: (1) Endogenous phosphorus from sediments accounts for 27.9 percent of the TP entering the reservoir, and it cannot be ignored; and (2) increasing temperature is helpful to TP releasing from sediments.
基金supported by the National Natural Science Foundation of China(Grant No.10972134)the State Key Program of National Natural Science of China(Grant No.11032007)
文摘Sediments in many rivers and lakes are subjected to resuspension due to a combination of hydrodynamics. However, the roles of contaminant-contained dissolved and particulate sediments during the resuspension release are rarely studied. This study focuses on the release quantity of contaminants in both water phase and solid phase. Conservative tracer (NaC1) and reactive tracer (Phosphorus) were respectively added to cohesive fine-grained sediments and non-cohesive coarse-grained sediments. A range of typical shear stress was conducted to characterize the time-depended release of contaminants in a laboratory flume. When the sediment started to move, the concentration of contaminant in the overlying water increased with the bed shear stress, but the dissolved contaminants responded faster than the particulate ones. The observed contaminant release process can be divided into three main stages: the initial two hours fast mixing: the release contribution of pore water could reach up to 75%; the middle 4-6 h adsorption: the partitioning coefficient of contaminant between water phase and solid phase decreased over the time, and the adsorption of contaminates from resuspended sediment dominated the negative release; the last equilibrium stage: the desorption and adsorption reached equilibrium, and the reactive contaminant made an impact on the water quality in the solid phase. The existing formulas to evaluate the release flux are far from practice meaning as the sediment contaminants undergo a very complex release process.
基金supported by the National Natural Science Foundation of China(Nos.91328203 and 41306110)
文摘Three cruises were launched in the Pearl River Estuary (PRE) in 2005 to investigate the biogeochemical cycling of nutrients associated with early diagenesis related to degradation of organic matter. Seasonal and spatial variations of pore water nutrient concentrations and profile patterns in sediments were studied. Nutrient fluxes at the sediment-water interface (SWI) were measured by incu- bation experiments, and we here discussed the accumulation and transformation processes of nutrients at the SWI. The nutrients generally decreased from the Pearl River outlets downstream, indicating an- thropogenic influences on the nutrient inputs in the estuary. NO3-N concentration was the highest of the three forms of DIN (dissolved inorganic nitrogen, the sum of NH4-N, NO3-N and NO2-N) in the overly- ing water, and NH4-N was the main component of DIN in pore water. The gradual increase of NH4-N and the rapid decrease of NO3-N with sediment depth provided the evidence for anaerobic conditions below the SWI. Negative fluxes of NO3-N and positive fluxes of NH4-N were commonly observed, sug- gesting the denitrification of NO3-N at the SWL The DIN flux direction suggested that the sediment was the sink of DIN in spring, however, the sediment was generally the source of DIN in summer and winter. PO4-P distribution patterns were distinct while SiO4-Si inconspicuously varied in sediment profiles in different seasons. The flux results indicated that PO4-P mainly diffused from the water column to the sediment while SiO4-Si mainly diffused from the sediment to the water column. Generally, the incu- bated fluxes were the coupling of diffusion, bioturbation and biochemical reactions, and were relatively accurate in this study.
基金Project supported by the National Natural Science Foun-dation of China(Grant No.11032007)the Shanghai Program for Innovative Research Team in Universities
文摘After the pollutant discharged into the river or lake has been reduced, the release of the contaminant from the sediment to the overlying water may cause the river and lake be contaminated again. On the condition that the overlying water flow does not lead to sediment suspension, numerical researches are carried out for the mechanism of contaminant release through the sedimentoverlying water interface. The overlying water flow is calculated as turbulence. The sediment is regarded as isotropic homogeneous porous medium, therefore the seepage field in the porous sediment layer is obtained by solving Darcy's equations. Coupled two dimensional steady flows of the overlying water and the pore water in the sediment are calculated. Based on the flow fields obtained, the unsteady contaminant solute transportation process in the pore water in the sediment and the overlying water is numerically simulated, as the shapes of the sediment-overlying water interface are flat or periodic triangular respectively. Numerical results show that the exchange of the pore water and the overlying water is an important factor which decides the release flux of the contaminant from the sediment to the overlying water. The pressure distribution produced by the overlying water flow along the sedimentoverlying water interface, as it is not flat, may induce the seepage of the pore water in the sediment and through the sedimentoverlying water interface, which may increase the release flux of the contaminant from the sediment to the overlying water.