This paper introduces the key laboratory on bundle conductors for high voltage overhead lines built byElectric Power Construction Research Institute under the State Power Corporation of China. It consists of 4 sub-lab...This paper introduces the key laboratory on bundle conductors for high voltage overhead lines built byElectric Power Construction Research Institute under the State Power Corporation of China. It consists of 4 sub-laboratories, namely the Aeolian Vibration Lab, Spacer Vibration Lab, Conductor Fatigue Lab and Conductor CreepageLab. The paper introduces also laboratory’s facilities, functions and some experimental results.[展开更多
A new type of element which is suitable for solving the modes of thegalloping long multi-span bundle conductor structures is presented. The element is composed of allsub-conductor segments between two spacers. Based o...A new type of element which is suitable for solving the modes of thegalloping long multi-span bundle conductor structures is presented. The element is composed of allsub-conductor segments between two spacers. Based on the linearized governing differential equationsof the conductors, the mass matrix and stiffness matrix of the element in consideration of theconstrained relations imposed on the conductors by spacers are derived. The dynamic characteristicsof the galloping control devices can be directly added to the element. The modes for an actual powerline structure are computed by using the element formula and FEM procedures, where seven cases ofdifferent galloping control device allocations are considered. Compared with the measured data, themethod is shown to be reliable and effective. Analysis and discussions of the computational resultsare given. Some hints that are helpful to further investigation of galloping are also obtained .展开更多
The corona onset voltage gradient(COG)of conductors is a key parameter in the design of overhead transmission lines.The commonly used semi-empirical calculation formula proposed by Peek(1910s)at present can roughly es...The corona onset voltage gradient(COG)of conductors is a key parameter in the design of overhead transmission lines.The commonly used semi-empirical calculation formula proposed by Peek(1910s)at present can roughly estimate the COG of single conductors and is not applicable to large cross-section bundle conductors.In this paper,experiments are conducted to investigate the corona characteristics of a whole series of bundle conductors at different altitudes,and a prediction formula is proposed for the COG of large cross-section bundle conductors on AC transmission lines considering the altitude correction.The calculated values using the proposed prediction formula are compared with the experimental values of the COG in two cases:UHV eight-bundle conductors at an altitude of 19 m;500 kV UHV four-bundle conductors in Wuhan,Xining,Geermu,and Nachitai at four different altitudes.The results show that the use of the formula can predict the COG of bundle conductors with the radius of 1.34 cm to 1.995 cm and the number of subconductors of 4 to 12 at altitudes of 19 m to 4000 m above the mean sea level.The research findings can provide a reference for the design of EHV and UHV overhead transmission lines and even those in higher voltage levels.展开更多
文摘This paper introduces the key laboratory on bundle conductors for high voltage overhead lines built byElectric Power Construction Research Institute under the State Power Corporation of China. It consists of 4 sub-laboratories, namely the Aeolian Vibration Lab, Spacer Vibration Lab, Conductor Fatigue Lab and Conductor CreepageLab. The paper introduces also laboratory’s facilities, functions and some experimental results.[
文摘A new type of element which is suitable for solving the modes of thegalloping long multi-span bundle conductor structures is presented. The element is composed of allsub-conductor segments between two spacers. Based on the linearized governing differential equationsof the conductors, the mass matrix and stiffness matrix of the element in consideration of theconstrained relations imposed on the conductors by spacers are derived. The dynamic characteristicsof the galloping control devices can be directly added to the element. The modes for an actual powerline structure are computed by using the element formula and FEM procedures, where seven cases ofdifferent galloping control device allocations are considered. Compared with the measured data, themethod is shown to be reliable and effective. Analysis and discussions of the computational resultsare given. Some hints that are helpful to further investigation of galloping are also obtained .
基金This work was supported by the National Natural Science Foundation of China(51577069,51277073)National Basic Research Programme of China(2011CB209401)+2 种基金the Science and Technology Project of State Grid Corporation of China(SGTYHT/15-JS-191)the Science and Technology Program of EPPEI(K201909-D)the Fundamental Research Funds for the Central Universities(2020MS092).
文摘The corona onset voltage gradient(COG)of conductors is a key parameter in the design of overhead transmission lines.The commonly used semi-empirical calculation formula proposed by Peek(1910s)at present can roughly estimate the COG of single conductors and is not applicable to large cross-section bundle conductors.In this paper,experiments are conducted to investigate the corona characteristics of a whole series of bundle conductors at different altitudes,and a prediction formula is proposed for the COG of large cross-section bundle conductors on AC transmission lines considering the altitude correction.The calculated values using the proposed prediction formula are compared with the experimental values of the COG in two cases:UHV eight-bundle conductors at an altitude of 19 m;500 kV UHV four-bundle conductors in Wuhan,Xining,Geermu,and Nachitai at four different altitudes.The results show that the use of the formula can predict the COG of bundle conductors with the radius of 1.34 cm to 1.995 cm and the number of subconductors of 4 to 12 at altitudes of 19 m to 4000 m above the mean sea level.The research findings can provide a reference for the design of EHV and UHV overhead transmission lines and even those in higher voltage levels.