In this paper, we present a nonmonotone smoothing Newton algorithm for solving the circular cone programming(CCP) problem in which a linear function is minimized or maximized over the intersection of an affine space w...In this paper, we present a nonmonotone smoothing Newton algorithm for solving the circular cone programming(CCP) problem in which a linear function is minimized or maximized over the intersection of an affine space with the circular cone. Based on the relationship between the circular cone and the second-order cone(SOC), we reformulate the CCP problem as the second-order cone problem(SOCP). By extending the nonmonotone line search for unconstrained optimization to the CCP, a nonmonotone smoothing Newton method is proposed for solving the CCP. Under suitable assumptions, the proposed algorithm is shown to be globally and locally quadratically convergent. Some preliminary numerical results indicate the effectiveness of the proposed algorithm for solving the CCP.展开更多
When signal-to-interference ratio is low, the energy of strong interference leaked from the side lobe of beam pattern will infect the detection of weak target. Therefore, the beam pattern needs to be op...When signal-to-interference ratio is low, the energy of strong interference leaked from the side lobe of beam pattern will infect the detection of weak target. Therefore, the beam pattern needs to be optimized. The existing Dolph-Chebyshev weighting method can get the lowest side lobe level under given main lobe width, but for the other non-uniform circular array and nonlinear array, the low side lobe pattern needs to be designed specially. The second order cone programming optimization (SOCP) algorithm proposed in the paper transforms the optimization of the beam pattern into a standard convex optimization problem. Thus there is a paradigm to follow for any array formation, which not only achieves the purpose of Dolph-Chebyshev weighting, but also solves the problem of the increased side lobe when the signal is at end fire direction The simulation proves that the SOCP algorithm can detect the weak target better than the conventional beam forming.展开更多
In order to improve the design results for the reconfigurable frequency response masking FRM filters an improved design method based on second-order cone programming SOCP is proposed.Unlike traditional methods that se...In order to improve the design results for the reconfigurable frequency response masking FRM filters an improved design method based on second-order cone programming SOCP is proposed.Unlike traditional methods that separately design the proposed method takes all the desired designing modes into consideration when designing all the subfilters. First an initial solution is obtained by separately designing the subfilters and then the initial solution is updated by iteratively solving a SOCP problem. The proposed method is evaluated on a design example and simulation results demonstrate that jointly designing all the subfilters can obtain significantly lower minimax approximation errors compared to the conventional design method.展开更多
Adaptive broadband beamforraing is a key issue in array applications. The adaptive broadband beamformer with tapped delay line (TDL) structure for nonuniform linear array (NLA) is designed according to the rule of...Adaptive broadband beamforraing is a key issue in array applications. The adaptive broadband beamformer with tapped delay line (TDL) structure for nonuniform linear array (NLA) is designed according to the rule of minimizing the beamformer's output power while keeping the distortionless response (DR) in the direction of desired signal and keeping the constant beamwidth (CB) with the prescribed sidelobe level over the whole operating band. This kind of beamforming problem can be solved with the interior-point method after being converted to the form of standard second order cone programming (SOCP). The computer simulations are presented which illustrate the effectiveness of our beamformer.展开更多
Based on the ideas of infeasible interior-point methods and predictor-corrector algorithms, two interior-point predictor-corrector algorithms for the second-order cone programming (SOCP) are presented. The two algor...Based on the ideas of infeasible interior-point methods and predictor-corrector algorithms, two interior-point predictor-corrector algorithms for the second-order cone programming (SOCP) are presented. The two algorithms use the Newton direction and the Euler direction as the predictor directions, respectively. The corrector directions belong to the category of the Alizadeh-Haeberly-Overton (AHO) directions. These algorithms are suitable to the cases of feasible and infeasible interior iterative points. A simpler neighborhood of the central path for the SOCP is proposed, which is the pivotal difference from other interior-point predictor-corrector algorithms. Under some assumptions, the algorithms possess the global, linear, and quadratic convergence. The complexity bound O(rln(εo/ε)) is obtained, where r denotes the number of the second-order cones in the SOCP problem. The numerical results show that the proposed algorithms are effective.展开更多
To improve the deteriorated capacity gain and source recovery performance due to channel mismatch problem,this paper reports a research about blind separation method against channel mismatch in multiple-input multiple...To improve the deteriorated capacity gain and source recovery performance due to channel mismatch problem,this paper reports a research about blind separation method against channel mismatch in multiple-input multiple-output(MIMO) systems.The channel mismatch problem can be described as a channel with bounded fluctuant errors due to channel distortion or channel estimation errors.The problem of blind signal separation/extraction with channel mismatch is formulated as a cost function of blind source separation(BSS) subject to the second-order cone constraint,which can be called as second-order cone programing optimization problem.Then the resulting cost function is solved by approximate negentropy maximization using quasi-Newton iterative methods for blind separation/extraction source signals.Theoretical analysis demonstrates that the proposed algorithm has low computational complexity and improved performance advantages.Simulation results verify that the capacity gain and bit error rate(BER) performance of the proposed blind separation method is superior to those of the existing methods in MIMO systems with channel mismatch problem.展开更多
This paper investigates the optimal control problem of spacecraft reorientation subject to attitude forbidden constraints,angular velocity saturation and actuator saturation simultaneously.A second-order cone programm...This paper investigates the optimal control problem of spacecraft reorientation subject to attitude forbidden constraints,angular velocity saturation and actuator saturation simultaneously.A second-order cone programming(SOCP)technology is developed to solve the strong nonlinear and non-convex control problem in real time.Specifically,the nonlinear attitude kinematic and dynamic are transformed and relaxed to a standard affine system,and linearization and L1 penalty technique are adopted to convexify non-convex inequality constraints.With the proposed quadratic performance index of angular velocity,the optimal control solution is obtained with high accuracy using the successive SOCP algorithm.Finally,the effectiveness of the algorithm is validated by numerical simulation.展开更多
A vu-decomposition method for solving a second-order cone problem is presented in this paper. It is first transformed into a nonlinear programming problem. Then, the structure of the Clarke subdifferential correspondi...A vu-decomposition method for solving a second-order cone problem is presented in this paper. It is first transformed into a nonlinear programming problem. Then, the structure of the Clarke subdifferential corresponding to the penalty function and some results of itsvu-decomposition are given. Under a certain condition, a twice continuously differentiable trajectory is computed to produce a second-order expansion of the objective function. A conceptual algorithm for solving this problem with a superlinear convergence rate is given.展开更多
This paper proposes an optimal day-ahead opti-mization schedule for gas-electric integrated energy system(IES)considering the bi-directional energy flow.The hourly topology of electric power system(EPS),natural gas sy...This paper proposes an optimal day-ahead opti-mization schedule for gas-electric integrated energy system(IES)considering the bi-directional energy flow.The hourly topology of electric power system(EPS),natural gas system(NGS),energy hubs(EH)integrated power to gas(P2G)unit,are modeled to minimize the day-ahead operation cost of IES.Then,a second-order cone programming(SOCP)method is utilized to solve the optimization problem,which is actually a mixed integer nonconvex and nonlinear programming issue.Besides,cutting planes are added to ensure the exactness of the global optimal solution.Finally,simulation results demonstrate that the proposed optimization schedule can provide a safe,effective and economical day-ahead scheduling scheme for gas-electric IES.展开更多
Temporal filters and spatial filters are widely used in many areas of signal processing. A number of optimal design criteria to these problems are available in the literature. Various computational techniques are also...Temporal filters and spatial filters are widely used in many areas of signal processing. A number of optimal design criteria to these problems are available in the literature. Various computational techniques are also presented to optimize these criteria chosen. There are many drawbacks in these methods. In this paper, we introduce a unified framework for optimal design of temporal and spatial filters. Most of the optimal design problems of FIR filters and beamformers are included in the framework. It is shown that all the design problems can be reformulated as convex optimization form as the second-order cone programming (SOCP) and solved efficiently via the well-established interior point methods. The main advantage of our SOCP approach as compared with earlier approaches is that it can include most of the existing methods as its special cases, which leads to more flexible designs. Furthermore, the SOCP approach can optimize multiple required performance measures, which is the drawback of earlier approaches. The SOCP approach is also developed to optimally design temporal and spatial two-dimensional filter and spatial matrix filter. Numerical results demonstrate the effectiveness of the proposed approach.展开更多
Nonlinear convex cone programming(NCCP)models have found many practical applications.In this paper,we introduce a flexible first-order primal-dual algorithm,called the variant auxiliary problem principle(VAPP),for sol...Nonlinear convex cone programming(NCCP)models have found many practical applications.In this paper,we introduce a flexible first-order primal-dual algorithm,called the variant auxiliary problem principle(VAPP),for solving NCCP problems when the objective function and constraints are convex but may be nonsmooth.At each iteration,VAPP generates a nonlinear approximation of the primal augmented Lagrangian model.The approximation incorporates both linearization and a distance-like proximal term,and then the iterations of VAPP are shown to possess a decomposition property for NCCP.Motivated by recent applications in big data analytics,there has been a growing interest in the convergence rate analysis of algorithms with parallel computing capabilities for large scale optimization problems.We establish O(1/t)convergence rate towards primal optimality,feasibility and dual optimality.By adaptively setting parameters at different iterations,we show an O(1/t2)rate for the strongly convex case.Finally,we discuss some issues in the implementation of VAPP.展开更多
In this paper,we present an infeasible-interior-point algorithm,based on a new wide neighborhood for symmetric cone programming.We treat the classical Newton direction as the sum of two other directions,and equip them...In this paper,we present an infeasible-interior-point algorithm,based on a new wide neighborhood for symmetric cone programming.We treat the classical Newton direction as the sum of two other directions,and equip them with different step sizes.We prove the complexity bound of the new algorithm for the Nesterov-Todd(NT)direction,and the xs and sx directions.The complexity bounds obtained here are the same as small neighborhood infeasible-interior-point algorithms over symmetric cones.展开更多
This paper presents a class of primal-dual path-following interior-point algorithms for symmetric cone programming(SCP)based on wide neighborhoods and new directions with a parameterθ.When the parameterθ=1,the direc...This paper presents a class of primal-dual path-following interior-point algorithms for symmetric cone programming(SCP)based on wide neighborhoods and new directions with a parameterθ.When the parameterθ=1,the direction is exactly the classical Newton direction.When the parameterθis independent of the rank of the associated Euclidean Jordan algebra,the algorithm terminates in at most O(κr logε−1)iterations,which coincides with the best known iteration bound for the classical wide neighborhood algorithms.When the parameterθ=√n/βτand Nesterov–Todd search direction is used,the algorithm has O(√r logε−1)iteration complexity,the best iteration complexity obtained so far by any interior-point method for solving SCP.To our knowledge,this is the first time that a class of interior-point algorithms including the classical wide neighborhood path-following algorithm is proposed and analyzed over symmetric cone.展开更多
This paper proposes a novel formulation using the matrix cone programming to compute an upper bound of the Shannon capacity of graphs,which is theoretically superior to the Lovász number.To achieve this,a sequenc...This paper proposes a novel formulation using the matrix cone programming to compute an upper bound of the Shannon capacity of graphs,which is theoretically superior to the Lovász number.To achieve this,a sequence of matrix cones is constructed by adding certain co-positive matrices to the positive semi-definite matrix cones during the matrix cone programming.We require the sequence of matrix cones to have the weak product property so that the improved result of the matrix cone programming remains an upper bound of the Shannon capacity.Our result shows that the existence of a sequence of suitable matrix cones with the weak product property is equivalent to the existence of a co-positive matrix with testable conditions.Finally,we give some concrete examples with special structures to verify the existence of the matrix cone sequence.展开更多
A globally convergent infeasible-interior-point predictor-corrector algorithm is presented for the second-order cone programming (SOCP) by using the Alizadeh- Haeberly-Overton (AHO) search direction. This algorith...A globally convergent infeasible-interior-point predictor-corrector algorithm is presented for the second-order cone programming (SOCP) by using the Alizadeh- Haeberly-Overton (AHO) search direction. This algorithm does not require the feasibility of the initial points and iteration points. Under suitable assumptions, it is shown that the algorithm can find an -approximate solution of an SOCP in at most O(√n ln(ε0/ε)) iterations. The iteration-complexity bound of our algorithm is almost the same as the best known bound of feasible interior point algorithms for the SOCP.展开更多
This paper deals with the bearing capacity determination of strip footing on a rock mass in hilly area by considering the influence of inclined and eccentric loading. Applying the generalized HoekBrown failure criteri...This paper deals with the bearing capacity determination of strip footing on a rock mass in hilly area by considering the influence of inclined and eccentric loading. Applying the generalized HoekBrown failure criterion, the failure behavior of the rock mass is modeled with the help of the power cone programming in the lower bound finite element limit analysis framework. Using bearing capacity factor(Ns), the change in bearing capacity of the strip footing due to the occurrence of eccentrically inclined loading is presented. The variations of the magnitude of Ns are obtained by examining the effects of the Hoek-Brown rock mass strength parameters(uniaxial compressive strength(sci), disturbance factor(D), rock parameter(mi), and Geological Strength Index(GSI)) in the presence of different magnitudes of eccentricity(e) and inclination angle(λ) with respect to the vertical plane, and presented as design charts. Both the inclined loading modes, i.e., inclination towards the center of strip footing(+λ) and inclination away from the center of strip footing(-λ), are adopted to perform the investigation. In addition, the correlation between the input parameters and the corresponding output is developed by utilizing the artificial neural network(ANN). Additionally, from sensitivity analysis, it is observed that inclination angle(λ) is the most sensitive parameter. For practicing engineers, the obtained design equation and design charts can be beneficial to understand the bearing capacity variation in the existence of eccentrically inclined loading in mountain areas.展开更多
In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a gene...In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a generalised Hellinger-Reissner(HR)variational principle,creating an implicit PFEM formulation.To mitigate the volumetric locking issue in low-order elements,we employ a node-based strain smoothing technique.By discretising field variables at the centre of smoothing cells,we achieve nodal integration over cells,eliminating the need for sophisticated mapping operations after re-meshing in the PFEM.We express the discretised governing equations as a min-max optimisation problem,which is further reformulated as a standard second-order cone programming(SOCP)problem.Stresses,pore water pressure,and displacements are simultaneously determined using the advanced primal-dual interior point method.Consequently,our numerical model offers improved accuracy for stresses and pore water pressure compared to the displacement-based PFEM formulation.Numerical experiments demonstrate that the N-PFEM efficiently captures both transient and long-term hydro-mechanical behaviour of saturated soils with high accuracy,obviating the need for stabilisation or regularisation techniques commonly employed in other nodal integration-based PFEM approaches.This work holds significant implications for the development of robust and accurate numerical tools for studying saturated soil dynamics.展开更多
For geotechnical stability analysis involving the Drucker-Prager(DP)criterion,both the c-ϕreduction scheme and the M-K reduction scheme can be utilized.With the aid of the second-order cone programming optimized finit...For geotechnical stability analysis involving the Drucker-Prager(DP)criterion,both the c-ϕreduction scheme and the M-K reduction scheme can be utilized.With the aid of the second-order cone programming optimized finite element method(FEM-SOCP),a comparison of the two strength reduction schemes for the stability analysis of a homogeneous slope and a multilayered slope is carried out.Numerical investigations disclose that the FoS results calculated by the c-ϕreduction scheme agree well with those calculated by the classical Morgenstern-Price solutions.However,the FoS results attained by the M-K reduction scheme may lead to conservative estimation of the geotechnical safety,particularly for the cases with large internal friction angles.In view of the possible big difference in stability analysis results caused by the M-K reduction scheme,the c-ϕreduction scheme is recommended for the geotechnical stability analyses involving the DP criterion.展开更多
The traditional guidance law only guarantees the accuracy of attacking a target. However, the look angle and acceleration constraints are indispensable in applications. A new adaptive three-dimensional proportional na...The traditional guidance law only guarantees the accuracy of attacking a target. However, the look angle and acceleration constraints are indispensable in applications. A new adaptive three-dimensional proportional navigation(PN) guidance law is proposed based on convex optimization. Decomposition of the three-dimensional space is carried out to establish threedimensional kinematic engagements. The constraints and the performance index are disposed by using the convex optimization method. PN guidance gains can be obtained by solving the optimization problem. This solution is more rapid and programmatic than the traditional method and provides a foundation for future online guidance methods, which is of great value for engineering applications.展开更多
Frequency-invariant beamformer (FIB) design is a key issue in wideband array signal processing. To use commonly wideband linear array with tapped delay line (TDL) structure and complex weights, the FIB design is p...Frequency-invariant beamformer (FIB) design is a key issue in wideband array signal processing. To use commonly wideband linear array with tapped delay line (TDL) structure and complex weights, the FIB design is provided according to the rule of minimizing the sidelobe level of the beampattern at the reference frequency while keeping the distortionless response constraint in the mainlobe direction at the reference frequency, the norm constraint of the weight vector and the amplitude constraint of the averaged spatial response variation (SRV). This kind of beamformer design problem can be solved with the interior-point method after being converted to the form of standard second order cone programming (SOCP). The computer simulations are presented which illustrate the effectiveness of our FIB design method for the wideband linear array with TDL structure and complex weights.展开更多
基金supported by the National Natural Science Foundation of China(11401126,71471140 and 11361018)Guangxi Natural Science Foundation(2016GXNSFBA380102 and 2014GXNSFFA118001)+2 种基金Guangxi Key Laboratory of Cryptography and Information Security(GCIS201618)Guangxi Key Laboratory of Automatic Detecting Technology and Instruments(YQ15112 and YQ16112)China
文摘In this paper, we present a nonmonotone smoothing Newton algorithm for solving the circular cone programming(CCP) problem in which a linear function is minimized or maximized over the intersection of an affine space with the circular cone. Based on the relationship between the circular cone and the second-order cone(SOC), we reformulate the CCP problem as the second-order cone problem(SOCP). By extending the nonmonotone line search for unconstrained optimization to the CCP, a nonmonotone smoothing Newton method is proposed for solving the CCP. Under suitable assumptions, the proposed algorithm is shown to be globally and locally quadratically convergent. Some preliminary numerical results indicate the effectiveness of the proposed algorithm for solving the CCP.
基金Special Item of National Major Scientific Apparatus Development(No.2013YQ140431)
文摘When signal-to-interference ratio is low, the energy of strong interference leaked from the side lobe of beam pattern will infect the detection of weak target. Therefore, the beam pattern needs to be optimized. The existing Dolph-Chebyshev weighting method can get the lowest side lobe level under given main lobe width, but for the other non-uniform circular array and nonlinear array, the low side lobe pattern needs to be designed specially. The second order cone programming optimization (SOCP) algorithm proposed in the paper transforms the optimization of the beam pattern into a standard convex optimization problem. Thus there is a paradigm to follow for any array formation, which not only achieves the purpose of Dolph-Chebyshev weighting, but also solves the problem of the increased side lobe when the signal is at end fire direction The simulation proves that the SOCP algorithm can detect the weak target better than the conventional beam forming.
基金The National Natural Science Foundation of China(No.61231002,61273266,61375028)the Ph.D.Programs Foundation of Ministry of Education of China(No.20110092130004)
文摘In order to improve the design results for the reconfigurable frequency response masking FRM filters an improved design method based on second-order cone programming SOCP is proposed.Unlike traditional methods that separately design the proposed method takes all the desired designing modes into consideration when designing all the subfilters. First an initial solution is obtained by separately designing the subfilters and then the initial solution is updated by iteratively solving a SOCP problem. The proposed method is evaluated on a design example and simulation results demonstrate that jointly designing all the subfilters can obtain significantly lower minimax approximation errors compared to the conventional design method.
基金supported by the National Nature Science Foundation of China (60472101)President Award of ChineseAcademy of Sciences(O729031511).
文摘Adaptive broadband beamforraing is a key issue in array applications. The adaptive broadband beamformer with tapped delay line (TDL) structure for nonuniform linear array (NLA) is designed according to the rule of minimizing the beamformer's output power while keeping the distortionless response (DR) in the direction of desired signal and keeping the constant beamwidth (CB) with the prescribed sidelobe level over the whole operating band. This kind of beamforming problem can be solved with the interior-point method after being converted to the form of standard second order cone programming (SOCP). The computer simulations are presented which illustrate the effectiveness of our beamformer.
基金supported by the National Natural Science Foundation of China (Nos. 71061002 and 11071158)the Natural Science Foundation of Guangxi Province of China (Nos. 0832052 and 2010GXNSFB013047)
文摘Based on the ideas of infeasible interior-point methods and predictor-corrector algorithms, two interior-point predictor-corrector algorithms for the second-order cone programming (SOCP) are presented. The two algorithms use the Newton direction and the Euler direction as the predictor directions, respectively. The corrector directions belong to the category of the Alizadeh-Haeberly-Overton (AHO) directions. These algorithms are suitable to the cases of feasible and infeasible interior iterative points. A simpler neighborhood of the central path for the SOCP is proposed, which is the pivotal difference from other interior-point predictor-corrector algorithms. Under some assumptions, the algorithms possess the global, linear, and quadratic convergence. The complexity bound O(rln(εo/ε)) is obtained, where r denotes the number of the second-order cones in the SOCP problem. The numerical results show that the proposed algorithms are effective.
基金supported by Sichuan Youth Science and Technology Innovation Research Team Project(No.2015TD0022)the Talents Project of Sichuan University of Science and Engineering(No.2017RCL11 and No.2017RCL10)the first batch of science and technology plan key R&D project of Sichuan province(No.2017GZ0068)
文摘To improve the deteriorated capacity gain and source recovery performance due to channel mismatch problem,this paper reports a research about blind separation method against channel mismatch in multiple-input multiple-output(MIMO) systems.The channel mismatch problem can be described as a channel with bounded fluctuant errors due to channel distortion or channel estimation errors.The problem of blind signal separation/extraction with channel mismatch is formulated as a cost function of blind source separation(BSS) subject to the second-order cone constraint,which can be called as second-order cone programing optimization problem.Then the resulting cost function is solved by approximate negentropy maximization using quasi-Newton iterative methods for blind separation/extraction source signals.Theoretical analysis demonstrates that the proposed algorithm has low computational complexity and improved performance advantages.Simulation results verify that the capacity gain and bit error rate(BER) performance of the proposed blind separation method is superior to those of the existing methods in MIMO systems with channel mismatch problem.
基金This work was supported by the National Natural Science Foundation of China(Nos.61960206011,61633003)the Beijing Natural Science Foundation(No.JQ19017)。
文摘This paper investigates the optimal control problem of spacecraft reorientation subject to attitude forbidden constraints,angular velocity saturation and actuator saturation simultaneously.A second-order cone programming(SOCP)technology is developed to solve the strong nonlinear and non-convex control problem in real time.Specifically,the nonlinear attitude kinematic and dynamic are transformed and relaxed to a standard affine system,and linearization and L1 penalty technique are adopted to convexify non-convex inequality constraints.With the proposed quadratic performance index of angular velocity,the optimal control solution is obtained with high accuracy using the successive SOCP algorithm.Finally,the effectiveness of the algorithm is validated by numerical simulation.
基金Project supported by the National Natural Science Foundation of China (No. 10771026)the Foundation of Dalian University of Technology (Nos. MXDUT73008 and MXDUT98009)
文摘A vu-decomposition method for solving a second-order cone problem is presented in this paper. It is first transformed into a nonlinear programming problem. Then, the structure of the Clarke subdifferential corresponding to the penalty function and some results of itsvu-decomposition are given. Under a certain condition, a twice continuously differentiable trajectory is computed to produce a second-order expansion of the objective function. A conceptual algorithm for solving this problem with a superlinear convergence rate is given.
基金This work was supported in part by the National Natural Science Foundation of China under Grants 61673161 and 51807134and in part by the program of fundamental research of the Siberian Branch of Russian Academy of Sciences and carried out within the framework of the research project III.17.3.1,Reg.No.AAAA-A17-117030310442-8.
文摘This paper proposes an optimal day-ahead opti-mization schedule for gas-electric integrated energy system(IES)considering the bi-directional energy flow.The hourly topology of electric power system(EPS),natural gas system(NGS),energy hubs(EH)integrated power to gas(P2G)unit,are modeled to minimize the day-ahead operation cost of IES.Then,a second-order cone programming(SOCP)method is utilized to solve the optimization problem,which is actually a mixed integer nonconvex and nonlinear programming issue.Besides,cutting planes are added to ensure the exactness of the global optimal solution.Finally,simulation results demonstrate that the proposed optimization schedule can provide a safe,effective and economical day-ahead scheduling scheme for gas-electric IES.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 60472073) the Doctorate Foundation of Northwestern Polytechnical University.
文摘Temporal filters and spatial filters are widely used in many areas of signal processing. A number of optimal design criteria to these problems are available in the literature. Various computational techniques are also presented to optimize these criteria chosen. There are many drawbacks in these methods. In this paper, we introduce a unified framework for optimal design of temporal and spatial filters. Most of the optimal design problems of FIR filters and beamformers are included in the framework. It is shown that all the design problems can be reformulated as convex optimization form as the second-order cone programming (SOCP) and solved efficiently via the well-established interior point methods. The main advantage of our SOCP approach as compared with earlier approaches is that it can include most of the existing methods as its special cases, which leads to more flexible designs. Furthermore, the SOCP approach can optimize multiple required performance measures, which is the drawback of earlier approaches. The SOCP approach is also developed to optimally design temporal and spatial two-dimensional filter and spatial matrix filter. Numerical results demonstrate the effectiveness of the proposed approach.
基金This research was supported by the National Natural Science Foundation of China(Nos.71471112 and 71871140).
文摘Nonlinear convex cone programming(NCCP)models have found many practical applications.In this paper,we introduce a flexible first-order primal-dual algorithm,called the variant auxiliary problem principle(VAPP),for solving NCCP problems when the objective function and constraints are convex but may be nonsmooth.At each iteration,VAPP generates a nonlinear approximation of the primal augmented Lagrangian model.The approximation incorporates both linearization and a distance-like proximal term,and then the iterations of VAPP are shown to possess a decomposition property for NCCP.Motivated by recent applications in big data analytics,there has been a growing interest in the convergence rate analysis of algorithms with parallel computing capabilities for large scale optimization problems.We establish O(1/t)convergence rate towards primal optimality,feasibility and dual optimality.By adaptively setting parameters at different iterations,we show an O(1/t2)rate for the strongly convex case.Finally,we discuss some issues in the implementation of VAPP.
基金the National Natural Science Foundation of China(Nos.11471102,11426091,and 61179040)the Natural Science Foundation of Henan University of Science and Technology(No.2014QN039)Key Basic Research Foundation of the Higher Education Institutions of Henan Province(No.16A110012).
文摘In this paper,we present an infeasible-interior-point algorithm,based on a new wide neighborhood for symmetric cone programming.We treat the classical Newton direction as the sum of two other directions,and equip them with different step sizes.We prove the complexity bound of the new algorithm for the Nesterov-Todd(NT)direction,and the xs and sx directions.The complexity bounds obtained here are the same as small neighborhood infeasible-interior-point algorithms over symmetric cones.
基金the National Natural Science Foundation of China(No.11471102)the Key Basic Research Foundation of the Higher Education Institutions of Henan Province(No.16A110012)。
文摘This paper presents a class of primal-dual path-following interior-point algorithms for symmetric cone programming(SCP)based on wide neighborhoods and new directions with a parameterθ.When the parameterθ=1,the direction is exactly the classical Newton direction.When the parameterθis independent of the rank of the associated Euclidean Jordan algebra,the algorithm terminates in at most O(κr logε−1)iterations,which coincides with the best known iteration bound for the classical wide neighborhood algorithms.When the parameterθ=√n/βτand Nesterov–Todd search direction is used,the algorithm has O(√r logε−1)iteration complexity,the best iteration complexity obtained so far by any interior-point method for solving SCP.To our knowledge,this is the first time that a class of interior-point algorithms including the classical wide neighborhood path-following algorithm is proposed and analyzed over symmetric cone.
基金supported by the National Natural Science Foundation of China(Nos.11871297,11871298,12025104 and 12031013)the Tsinghua University Initiative Scientific Research Programsupported by the National Key R&D Program of China(No.2020YFA0712000).
文摘This paper proposes a novel formulation using the matrix cone programming to compute an upper bound of the Shannon capacity of graphs,which is theoretically superior to the Lovász number.To achieve this,a sequence of matrix cones is constructed by adding certain co-positive matrices to the positive semi-definite matrix cones during the matrix cone programming.We require the sequence of matrix cones to have the weak product property so that the improved result of the matrix cone programming remains an upper bound of the Shannon capacity.Our result shows that the existence of a sequence of suitable matrix cones with the weak product property is equivalent to the existence of a co-positive matrix with testable conditions.Finally,we give some concrete examples with special structures to verify the existence of the matrix cone sequence.
基金the National Science Foundation(60574075, 60674108)
文摘A globally convergent infeasible-interior-point predictor-corrector algorithm is presented for the second-order cone programming (SOCP) by using the Alizadeh- Haeberly-Overton (AHO) search direction. This algorithm does not require the feasibility of the initial points and iteration points. Under suitable assumptions, it is shown that the algorithm can find an -approximate solution of an SOCP in at most O(√n ln(ε0/ε)) iterations. The iteration-complexity bound of our algorithm is almost the same as the best known bound of feasible interior point algorithms for the SOCP.
基金supported by Centre for Development of Advanced Computing (CDAC), Pune。
文摘This paper deals with the bearing capacity determination of strip footing on a rock mass in hilly area by considering the influence of inclined and eccentric loading. Applying the generalized HoekBrown failure criterion, the failure behavior of the rock mass is modeled with the help of the power cone programming in the lower bound finite element limit analysis framework. Using bearing capacity factor(Ns), the change in bearing capacity of the strip footing due to the occurrence of eccentrically inclined loading is presented. The variations of the magnitude of Ns are obtained by examining the effects of the Hoek-Brown rock mass strength parameters(uniaxial compressive strength(sci), disturbance factor(D), rock parameter(mi), and Geological Strength Index(GSI)) in the presence of different magnitudes of eccentricity(e) and inclination angle(λ) with respect to the vertical plane, and presented as design charts. Both the inclined loading modes, i.e., inclination towards the center of strip footing(+λ) and inclination away from the center of strip footing(-λ), are adopted to perform the investigation. In addition, the correlation between the input parameters and the corresponding output is developed by utilizing the artificial neural network(ANN). Additionally, from sensitivity analysis, it is observed that inclination angle(λ) is the most sensitive parameter. For practicing engineers, the obtained design equation and design charts can be beneficial to understand the bearing capacity variation in the existence of eccentrically inclined loading in mountain areas.
基金supported by the Swiss National Science Foundation(Grant No.189882)the National Natural Science Foundation of China(Grant No.41961134032)support provided by the New Investigator Award grant from the UK Engineering and Physical Sciences Research Council(Grant No.EP/V012169/1).
文摘In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a generalised Hellinger-Reissner(HR)variational principle,creating an implicit PFEM formulation.To mitigate the volumetric locking issue in low-order elements,we employ a node-based strain smoothing technique.By discretising field variables at the centre of smoothing cells,we achieve nodal integration over cells,eliminating the need for sophisticated mapping operations after re-meshing in the PFEM.We express the discretised governing equations as a min-max optimisation problem,which is further reformulated as a standard second-order cone programming(SOCP)problem.Stresses,pore water pressure,and displacements are simultaneously determined using the advanced primal-dual interior point method.Consequently,our numerical model offers improved accuracy for stresses and pore water pressure compared to the displacement-based PFEM formulation.Numerical experiments demonstrate that the N-PFEM efficiently captures both transient and long-term hydro-mechanical behaviour of saturated soils with high accuracy,obviating the need for stabilisation or regularisation techniques commonly employed in other nodal integration-based PFEM approaches.This work holds significant implications for the development of robust and accurate numerical tools for studying saturated soil dynamics.
基金Projects(42002277,41972279,41772291)supported by the National Natural Science Foundation of ChinaProjects(2020M680321,2021T140046)supported by the China Postdoctoral Science Foundation+1 种基金Projects(2020-zz-081,2021-PC-003)supported by the Beijing Postdoctoral Research Foundation,ChinaProject(X21074)supported by the Fundamental Research Funds for Beijing University of Civil Engineering and Architecture,China。
文摘For geotechnical stability analysis involving the Drucker-Prager(DP)criterion,both the c-ϕreduction scheme and the M-K reduction scheme can be utilized.With the aid of the second-order cone programming optimized finite element method(FEM-SOCP),a comparison of the two strength reduction schemes for the stability analysis of a homogeneous slope and a multilayered slope is carried out.Numerical investigations disclose that the FoS results calculated by the c-ϕreduction scheme agree well with those calculated by the classical Morgenstern-Price solutions.However,the FoS results attained by the M-K reduction scheme may lead to conservative estimation of the geotechnical safety,particularly for the cases with large internal friction angles.In view of the possible big difference in stability analysis results caused by the M-K reduction scheme,the c-ϕreduction scheme is recommended for the geotechnical stability analyses involving the DP criterion.
基金supported by the National Natural Science Foundation of China(61803357)。
文摘The traditional guidance law only guarantees the accuracy of attacking a target. However, the look angle and acceleration constraints are indispensable in applications. A new adaptive three-dimensional proportional navigation(PN) guidance law is proposed based on convex optimization. Decomposition of the three-dimensional space is carried out to establish threedimensional kinematic engagements. The constraints and the performance index are disposed by using the convex optimization method. PN guidance gains can be obtained by solving the optimization problem. This solution is more rapid and programmatic than the traditional method and provides a foundation for future online guidance methods, which is of great value for engineering applications.
基金supported by the President Award of Chinese Academy of Sciences (O729031511)
文摘Frequency-invariant beamformer (FIB) design is a key issue in wideband array signal processing. To use commonly wideband linear array with tapped delay line (TDL) structure and complex weights, the FIB design is provided according to the rule of minimizing the sidelobe level of the beampattern at the reference frequency while keeping the distortionless response constraint in the mainlobe direction at the reference frequency, the norm constraint of the weight vector and the amplitude constraint of the averaged spatial response variation (SRV). This kind of beamformer design problem can be solved with the interior-point method after being converted to the form of standard second order cone programming (SOCP). The computer simulations are presented which illustrate the effectiveness of our FIB design method for the wideband linear array with TDL structure and complex weights.