期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于Fisher判别的分布式K-Means聚类算法
被引量:
5
1
作者
彭长生
《江苏大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2014年第4期422-427,共6页
为了解决集中式聚类算法不能处理海量大数据的问题,提出基于Fisher判别确定置信半径的分布式聚类算法.应用网络上各个节点的计算、存储能力,以及网络的带宽,将聚类所需的时间复杂度和空间复杂度平摊到各个节点.通过应用Fisher线性判别...
为了解决集中式聚类算法不能处理海量大数据的问题,提出基于Fisher判别确定置信半径的分布式聚类算法.应用网络上各个节点的计算、存储能力,以及网络的带宽,将聚类所需的时间复杂度和空间复杂度平摊到各个节点.通过应用Fisher线性判别找到节点在同一子类数据上的稠密和稀疏分布,从而快速确定聚类的置信半径并指导下一步的聚类过程,使得保持聚类精度的同时能提高分布式聚类的速度.对算法进行了数值模拟,并使用真实数据完成了试验.结果表明,所提出算法相比DFEKM聚类算法,能根据数据分布的不同在聚类结果和聚类速度上达到很好的平衡,这表明该算法具有更好的健壮性.
展开更多
关键词
P2P网络
聚类算法
分布式聚类
FISHER线性判别
置信半径
下载PDF
职称材料
题名
基于Fisher判别的分布式K-Means聚类算法
被引量:
5
1
作者
彭长生
机构
江苏大学计算机科学与通信工程学院
出处
《江苏大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2014年第4期422-427,共6页
基金
国家科技创新基金资助项目(10C26213200946)
江苏省科技创新项目(BC2009265)
镇江市工业支撑项目(GY2012007)
文摘
为了解决集中式聚类算法不能处理海量大数据的问题,提出基于Fisher判别确定置信半径的分布式聚类算法.应用网络上各个节点的计算、存储能力,以及网络的带宽,将聚类所需的时间复杂度和空间复杂度平摊到各个节点.通过应用Fisher线性判别找到节点在同一子类数据上的稠密和稀疏分布,从而快速确定聚类的置信半径并指导下一步的聚类过程,使得保持聚类精度的同时能提高分布式聚类的速度.对算法进行了数值模拟,并使用真实数据完成了试验.结果表明,所提出算法相比DFEKM聚类算法,能根据数据分布的不同在聚类结果和聚类速度上达到很好的平衡,这表明该算法具有更好的健壮性.
关键词
P2P网络
聚类算法
分布式聚类
FISHER线性判别
置信半径
Keywords
P2P network
clustering algorithm
distributed clustering
Fisher discriminant ratio
confi- dence radius
分类号
TP393 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于Fisher判别的分布式K-Means聚类算法
彭长生
《江苏大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2014
5
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部