A novel test approach for interconnect resources (IRs) in field programmable gate arrays (FPGA) has been proposed.In the test approach,SBs (switch boxes) of IRs in FPGA has been utilized to test IRs.Furthermore,...A novel test approach for interconnect resources (IRs) in field programmable gate arrays (FPGA) has been proposed.In the test approach,SBs (switch boxes) of IRs in FPGA has been utilized to test IRs.Furthermore,configurable logic blocks (CLBs) in FPGA have also been employed to enhance driving capability and the position of fault IR can be determined by monitoring the IRs associated SBs.As a result,IRs can be scanned maximally with minimum configuration patterns.In the experiment,an in-house developed FPGA test system based on system-on-chip (SoC) hardware/software verification technology has been applied to test XC4000E family of Xilinx.The experiment results revealed that the IRs in FPGA can be tested by 6 test patterns.展开更多
Field programmable gate arrays (FPGAs) have wide and extensive applications in many areas. Due to programmable feature of FPGAs, faults of FPGAs can be easily tolerated if fault sites can be located. A hardware/soft...Field programmable gate arrays (FPGAs) have wide and extensive applications in many areas. Due to programmable feature of FPGAs, faults of FPGAs can be easily tolerated if fault sites can be located. A hardware/software (HW/SW) co-verification technique for FPGA test is proposed in this paper. Taking advantage of flexibility and observability of software in conjunction with high-speed simulation of hardware, this technique is capable of testing each input/output block (IOB) and configurable logic block (CLB) of FPGA automatically, exhaustively and repeatedly. Fault cells of FPGA can be positioned automatically by the proposed approach. As a result, test efficiency and reliability can be enhanced without manual work.展开更多
A new LUT and carry structure embedded in the configurable logic block of an FPGA is proposed. The LUT is designed to support both 4-input and 5-input structures, which can be configured by users according to their ne...A new LUT and carry structure embedded in the configurable logic block of an FPGA is proposed. The LUT is designed to support both 4-input and 5-input structures, which can be configured by users according to their needs without increasing interconnect resources. We also develop a new carry chain structure with an optimized critical path. Finally a newly designed configurable scan-chain is inserted. The circuit is fabricated in 0.13μm 1P8M 1.2/2.5/3.3 V logic CMOS process. The test results show a correct function of 4/5-input LUT and scan- chain, and a speedup in carry performance of nearly 3 times over current architecture in the same technology at the cost of an increase in total area of about 72.5%. Our results also show that the logic utilization of this work is better than that of a Virtex lI/Virtex 4/Virtex 5/Virtex 6/Virtex 7 FPGA when implemented using only 4-LUT and better than that of a Virtex lI/Virtex 4 FPGA when implemented using only 5-LUT.展开更多
基金supported by the Key Techniques of FPGA Architecture under Grant No. 9140A08010106QT9201
文摘A novel test approach for interconnect resources (IRs) in field programmable gate arrays (FPGA) has been proposed.In the test approach,SBs (switch boxes) of IRs in FPGA has been utilized to test IRs.Furthermore,configurable logic blocks (CLBs) in FPGA have also been employed to enhance driving capability and the position of fault IR can be determined by monitoring the IRs associated SBs.As a result,IRs can be scanned maximally with minimum configuration patterns.In the experiment,an in-house developed FPGA test system based on system-on-chip (SoC) hardware/software verification technology has been applied to test XC4000E family of Xilinx.The experiment results revealed that the IRs in FPGA can be tested by 6 test patterns.
基金supported by Key Techniques of FPGA Architecture under Grant No.9140A08010106QT9201the support from UESTC Youth Funds
文摘Field programmable gate arrays (FPGAs) have wide and extensive applications in many areas. Due to programmable feature of FPGAs, faults of FPGAs can be easily tolerated if fault sites can be located. A hardware/software (HW/SW) co-verification technique for FPGA test is proposed in this paper. Taking advantage of flexibility and observability of software in conjunction with high-speed simulation of hardware, this technique is capable of testing each input/output block (IOB) and configurable logic block (CLB) of FPGA automatically, exhaustively and repeatedly. Fault cells of FPGA can be positioned automatically by the proposed approach. As a result, test efficiency and reliability can be enhanced without manual work.
基金supported by the National High Technology Research and Development Thematic Program of China(No.2012AA012001)
文摘A new LUT and carry structure embedded in the configurable logic block of an FPGA is proposed. The LUT is designed to support both 4-input and 5-input structures, which can be configured by users according to their needs without increasing interconnect resources. We also develop a new carry chain structure with an optimized critical path. Finally a newly designed configurable scan-chain is inserted. The circuit is fabricated in 0.13μm 1P8M 1.2/2.5/3.3 V logic CMOS process. The test results show a correct function of 4/5-input LUT and scan- chain, and a speedup in carry performance of nearly 3 times over current architecture in the same technology at the cost of an increase in total area of about 72.5%. Our results also show that the logic utilization of this work is better than that of a Virtex lI/Virtex 4/Virtex 5/Virtex 6/Virtex 7 FPGA when implemented using only 4-LUT and better than that of a Virtex lI/Virtex 4 FPGA when implemented using only 5-LUT.