期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Design and implementation of dual-mode configurable memory architecture for CNN accelerator
1
作者 山蕊 LI Xiaoshuo +1 位作者 GAO Xu HUO Ziqing 《High Technology Letters》 EI CAS 2024年第2期211-220,共10页
With the rapid development of deep learning algorithms,the computational complexity and functional diversity are increasing rapidly.However,the gap between high computational density and insufficient memory bandwidth ... With the rapid development of deep learning algorithms,the computational complexity and functional diversity are increasing rapidly.However,the gap between high computational density and insufficient memory bandwidth under the traditional von Neumann architecture is getting worse.Analyzing the algorithmic characteristics of convolutional neural network(CNN),it is found that the access characteristics of convolution(CONV)and fully connected(FC)operations are very different.Based on this feature,a dual-mode reronfigurable distributed memory architecture for CNN accelerator is designed.It can be configured in Bank mode or first input first output(FIFO)mode to accommodate the access needs of different operations.At the same time,a programmable memory control unit is designed,which can effectively control the dual-mode configurable distributed memory architecture by using customized special accessing instructions and reduce the data accessing delay.The proposed architecture is verified and tested by parallel implementation of some CNN algorithms.The experimental results show that the peak bandwidth can reach 13.44 GB·s^(-1)at an operating frequency of 120 MHz.This work can achieve 1.40,1.12,2.80 and 4.70 times the peak bandwidth compared with the existing work. 展开更多
关键词 distributed memory structure neural network accelerator reconfigurable arrayprocessor configurable memory structure
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部