This article investigates the optimal observation configuration of unmanned aerial vehicles(UAVs) based on angle and range measurements, and generalizes predecessors' researches in two dimensions into three dimens...This article investigates the optimal observation configuration of unmanned aerial vehicles(UAVs) based on angle and range measurements, and generalizes predecessors' researches in two dimensions into three dimensions. The relative geometry of the UAVs-target will significantly affect the state estimation performance of the target, the cost function based on the Fisher information matrix(FIM) is used to derive the FIM determinant of UAVs' observation in three-dimensional space, and the optimal observation geometric configuration that maximizes the determinant of the FIM is obtained. It is shown that the optimal observation configuration of the UAVs-target is usually not unique, and the optimal observation configuration is proved for two UAVs and three UAVs in three-dimension. The long-range over-the-horizon target tracking is simulated and analyzed based on the analysis of optimal observation configuration for two UAVs. The simulation results show that the theoretical analysis and control algorithm can effectively improve the positioning accuracy of the target. It can provide a helpful reference for the design of over-the-horizon target localization based on UAVs.展开更多
This paper presents the crucial method for obtaining our team's results in the 8th Global Trajectory Optimization Competition(GTOC8).Because the positions and velocities of spacecraft cannot be completely determin...This paper presents the crucial method for obtaining our team's results in the 8th Global Trajectory Optimization Competition(GTOC8).Because the positions and velocities of spacecraft cannot be completely determined by one observation on one radio source,the branch and bound method for sequence optimization of multi-asteroid exploration cannot be directly applied here.To overcome this diculty,an optimization method for searching the observing sequence based on nominal low-thrust trajectories of the symmetric observing con guration is proposed.With the symmetric observing con guration,the normal vector of the triangle plane formed by the three spacecraft rotates in the ecliptic plane periodically and approximately points to the radio sources which are close to the ecliptic plane.All possible observing opportunities are selected and ranked according to the nominal trajectories designed by the symmetric observing con guration.First,the branch and bound method is employed to nd the optimal sequence of the radio source with thrice observations.Second,this method is also used to nd the optimal sequence of the left radio sources.The nominal trajectories are then corrected for accurate observations.The performance index of our result is 128,286,317.0 km which ranks the second place in GTOC8.展开更多
基金supported by the National Natural Science Foundation of China(61703419)。
文摘This article investigates the optimal observation configuration of unmanned aerial vehicles(UAVs) based on angle and range measurements, and generalizes predecessors' researches in two dimensions into three dimensions. The relative geometry of the UAVs-target will significantly affect the state estimation performance of the target, the cost function based on the Fisher information matrix(FIM) is used to derive the FIM determinant of UAVs' observation in three-dimensional space, and the optimal observation geometric configuration that maximizes the determinant of the FIM is obtained. It is shown that the optimal observation configuration of the UAVs-target is usually not unique, and the optimal observation configuration is proved for two UAVs and three UAVs in three-dimension. The long-range over-the-horizon target tracking is simulated and analyzed based on the analysis of optimal observation configuration for two UAVs. The simulation results show that the theoretical analysis and control algorithm can effectively improve the positioning accuracy of the target. It can provide a helpful reference for the design of over-the-horizon target localization based on UAVs.
基金the National Natural Science Foundation of China(Grant Nos.11672146 and 11432001)The authors thank the organizer of GTOC8.
文摘This paper presents the crucial method for obtaining our team's results in the 8th Global Trajectory Optimization Competition(GTOC8).Because the positions and velocities of spacecraft cannot be completely determined by one observation on one radio source,the branch and bound method for sequence optimization of multi-asteroid exploration cannot be directly applied here.To overcome this diculty,an optimization method for searching the observing sequence based on nominal low-thrust trajectories of the symmetric observing con guration is proposed.With the symmetric observing con guration,the normal vector of the triangle plane formed by the three spacecraft rotates in the ecliptic plane periodically and approximately points to the radio sources which are close to the ecliptic plane.All possible observing opportunities are selected and ranked according to the nominal trajectories designed by the symmetric observing con guration.First,the branch and bound method is employed to nd the optimal sequence of the radio source with thrice observations.Second,this method is also used to nd the optimal sequence of the left radio sources.The nominal trajectories are then corrected for accurate observations.The performance index of our result is 128,286,317.0 km which ranks the second place in GTOC8.