An analytic configuration interaction method based on variationally optimized internally orthogonalized modified Laguerre orbitals is presented. We have developed the corresponding computer code. For application, we s...An analytic configuration interaction method based on variationally optimized internally orthogonalized modified Laguerre orbitals is presented. We have developed the corresponding computer code. For application, we study the 1s2s ^1S isoelectronic sequence from helium to neon, and compare with other methods. By taking into account the Eekart upper-bound theorem, we obtained more accurate and more intuitively understandable results than Hartree-Fock and multi-configuration Hartree-Fock reported results.展开更多
The potential energy curves (PECs) of the ground state (^3∏) and three low-lying excited states (^1∑, ^3∑,^1∏) of CdSe dimer have been studied by employing quasirelativistic effective core potentials on the ...The potential energy curves (PECs) of the ground state (^3∏) and three low-lying excited states (^1∑, ^3∑,^1∏) of CdSe dimer have been studied by employing quasirelativistic effective core potentials on the basis of the complete active space self-consistent field method followed by multireference configuration interaction calculation. The four PECs are fitted to analytical potential energy functions using the Murrel-Sorbie potential function. Based on the PECs, the vibrational levels of the four states are determined by solving the Schrodinger equation of nuclear motion, and corresponding spectroscopic constants are accurately calculated. The equilibrium positions as well as the spectroscopic constants and the vibrational levels are reported. By our analysis, the ^3∏ state, of which the dissociation asymptote is Cd(^1S) + Se(^3p), is identified as a ground state of CdSe dimer, and the corresponding dissociation energy is estimated to be 0.39eV. However, the first excited state is only 1132.49cm^-1 above the ground state and the ^3∑ state is the highest in the four calculated states.展开更多
With contributions from Breit interaction, quantum electrodynarnics (QED) corrections and nuclear mass corrections to the initial and final levels are taken into account. The transition energies, transition probabil...With contributions from Breit interaction, quantum electrodynarnics (QED) corrections and nuclear mass corrections to the initial and final levels are taken into account. The transition energies, transition probabilities, and absorption oscillator strengths of Kα x-ray from Mn XVII to Mn XXIV have been calculated by using relativistic configuration interaction (RCI) and multi-configuration Dirac Fock (MCDF) method in the active interaction approach. Compared with the only available experimental transition data on He-like and Li-like manganese, the present results are in good agreement with them, and the rest of transition data of the present results are new ones. These wide range data can provide useful parameters for the study of the manganese plasma.展开更多
We investigate the geometries and energies of seven electronic states X-1A1, A1B1, a-3B1, B-1A2,b-3A2, C1B2 and c-3B2 of CF2 carbene using internally contracted multireference configuration interaction methods includi...We investigate the geometries and energies of seven electronic states X-1A1, A1B1, a-3B1, B-1A2,b-3A2, C1B2 and c-3B2 of CF2 carbene using internally contracted multireference configuration interaction methods including Davidson correction (icMRCIq-Q) with different basis sets aug-cc-pVXZ (X=T, Q, 5). For the first time, the potential energy curves of electronic states of CF2 related icMRCI+Q/aug-cc-pVTZ level. The ab initio results will and dynamics of electronic states of CF2 radical. to the lowest dissociation limit are calculated at the further increase our understanding of the structures展开更多
Fatigue dislocation configurations of Zircaloy-4 at 470℃×1h stress-relieved condition and 620℃×1h recrystallized condition were analyzed using TEM. Theresults show that: {1 0 1 0} prismatic slip is the pri...Fatigue dislocation configurations of Zircaloy-4 at 470℃×1h stress-relieved condition and 620℃×1h recrystallized condition were analyzed using TEM. Theresults show that: {1 0 1 0} prismatic slip is the primary deformation mode at RT. Prismatic and pyramidal slips are activated simultaneously at 400℃. The typicalsubstructure is the elongated dislocation lines at RT; whereas at 400℃, it is rectangularcells in stress-relieved specimens, and elongated cells plus dipole perpendicular cellboundary in recrystallized specimens. The relationship map among dislocation configuration, test temperature and cyclic strain range is established, finally.展开更多
Iterative multireference configuration interaction (IMRCI) is proposed. It is exploited to compute the electronic energies of H2O and CH2(singlet and triplet states) at equilibrium and non-equilibrium geometries. The ...Iterative multireference configuration interaction (IMRCI) is proposed. It is exploited to compute the electronic energies of H2O and CH2(singlet and triplet states) at equilibrium and non-equilibrium geometries. The potential energy curves of H2O, CH2(singlet and triplet states) and N2 have also been calculated with IMRCI as well as the M?ller Plesset perturbation theory (MP2, MP3, and MP4), the coupled cluster method with single and double substitutions (CCSD), and CCSD with perturbative triples correction (CCSD(T)).These calculations demonstrate that IMRCI results are independent of the initial guess of configuration functions in the reference space and converge quickly to the results of the full configuration interaction. The IMRCI errors relative to the full configuration interaction results are at the order of magnitude of 10-5 hartree within just 2-4 iterations. Further,IMRCI provides an efficient way to find on the potential energy surface the leading electron configurations which, as correct reference states, will be very helpful for the single-reference and multireference theoretical models to obtain accurate results.展开更多
We give a detailed examination of potential energy curves of the singlet and triplet states of CFC1 correlated with the lowest three dissociation limits. The calculations are carried out at the internally contracted m...We give a detailed examination of potential energy curves of the singlet and triplet states of CFC1 correlated with the lowest three dissociation limits. The calculations are carried out at the internally contracted multi- reference configuration interaction/cc-pV(T+d)Z level with the other two geometric parameters fixed at the state equilibrium conformation. The vertical transition energy, the oscillator strength, the main configuration and the electron transition are also investigated at the same level.展开更多
The potential energy curves for neutrals and multiply charged ions of carbon monosulfide are computed with highly correlated multi-reference configuration interaction wavefunctions.The correlations of inner-shell elec...The potential energy curves for neutrals and multiply charged ions of carbon monosulfide are computed with highly correlated multi-reference configuration interaction wavefunctions.The correlations of inner-shell electrons with the scalar relativistic effects are included in the present computations.The spectroscopic constants,dissociation energies,ionization energies for ground and low-lying excited states together with corresponding electronic configurations of ions are obtained,and a good agreement between the present work and existing experiments is found.No theoretical evidence is found for the adiabatically stable CSq+(q〉2) ions according to the present ab initio calculations.The calculated values for 1st-6th ionization energies are 11.25,32.66,64.82,106.25,159.75,and 224.64 eV,respectively.The kinetic energy release data of fragments are provided by the present work for further experimental comparisons.展开更多
To validate the ability of full configuration interaction quantum Monte Carlo (FCIQMC) for studying the 2D Hubbard model near half-filling regime, the ground state energies of a 4×44×4 square lattice syste...To validate the ability of full configuration interaction quantum Monte Carlo (FCIQMC) for studying the 2D Hubbard model near half-filling regime, the ground state energies of a 4×44×4 square lattice system with various interaction strengths are calculated. It is found that the calculated results are in good agreement with those obtained by exact diagonalization (i.e., the exact values for a given basis set) when the population of psi particles (psips) is higher than the critical population required to correctly sample the ground state wave function. In addition, the variations of the average computational time per 20 Monte Carlo cycles with the coupling strength and the number of processors are also analyzed. The calculated results show that the computational efficiency of an FCIQMC calculation is mainly affected by the total population of psips and the communication between processors. These results can provide useful references for understanding the FCIQMC algorithm, studying the ground state properties of the 2D Hubbard model for the larger system size by the FCIQMC method and using a computational budget as effectively as possible.展开更多
The SiS molecule,which plays a significant role in space,has attracted a great deal of attention for many years.Due to complex interactions among its low-lying electronic states,precise information regarding the molec...The SiS molecule,which plays a significant role in space,has attracted a great deal of attention for many years.Due to complex interactions among its low-lying electronic states,precise information regarding the molecular structure of SiS is limited.To obtain accurate information about the structure of its excited states,the high-precision multireference configuration interaction(MRCI)method has been utilized.This method is used to calculate the potential energy curves(PECs)of the 18Λ–S states corresponding to the lowest dissociation limit of SiS.The core–valence correlation effect,Davidson’s correction and the scalar relativistic effect are also included to guarantee the precision of the MRCI calculation.Based on the calculated PECs,the spectroscopic constants of quasi-bound and bound electronic states are calculated and they are in accordance with previous experimental results.The transition dipole moments(TDMs)and dipole moments(DMs)are determined by the MRCI method.In addition,the abrupt variations of the DMs for the 1^(5)Σ^(+)and 2^(5)Σ^(+)states at the avoided crossing point are attributed to the variation of the electronic configuration.The opacity of SiS at a pressure of 100 atms is presented across a series of temperatures.With increasing temperature,the expanding population of excited states blurs the band boundaries.展开更多
A global three dimensional potential energy surface for the F+H2→HF+H reaction has been developed by spline interpolation of about 15,000 symmetry-unique ab initio points, obtained from the multi-reference configur...A global three dimensional potential energy surface for the F+H2→HF+H reaction has been developed by spline interpolation of about 15,000 symmetry-unique ab initio points, obtained from the multi-reference configuration interaction level with Davidson correction using the aug-cc-pV5Z basis set. In the entrance channel the spin-orbit coupling energy is also included.展开更多
Relativistic configuration interaction calculations for the states of 1s^22s^2, 1s^22s3l (l = s,p,d) and 1s^22p31 (l=s,p,d) configurations of iron are carried out using relativistic configuration interaction (RCI...Relativistic configuration interaction calculations for the states of 1s^22s^2, 1s^22s3l (l = s,p,d) and 1s^22p31 (l=s,p,d) configurations of iron are carried out using relativistic configuration interaction (RCI) and multi-configuration Dirac-Fock (MCDF) method in the active interaction approach. In the present calculation, a large-scale configuration expansion was used in describing the target states. These results are extensively compared with other available calculative and experimental and observed values, the corresponding present results are in good agreement with experimental and observed values, and some differences are found with other available calculative values. Because more relativistic effects are considered than before, the present results should be more accurate and reliable.展开更多
This paper calculates the equilibrium internuclear separations, the harmonic frequencies and the potential energy curves of the X^2∑+, A^2П and B^2∑+ states of the CP radical by the highly accurate valence intern...This paper calculates the equilibrium internuclear separations, the harmonic frequencies and the potential energy curves of the X^2∑+, A^2П and B^2∑+ states of the CP radical by the highly accurate valence internally contracted multireference configuration interaction method with correlation-consistent basis sets (aug-cc-pV6Z for C atom and aug-cc-pVQZ for P atom). The potential energy curves are all fitted with the analytic potential energy function by the least-square fitting. Employing the analytic potential energy function, we determine the spectroscopic constants (Be, αe and ωeχe) of these states. For the X2∑+ state, the obtained values of De, Be, αe, ωeχe, Re and ωe are 5.4831 eV, 0.792119 cm-1, 0.005521 cm-1, 6.89653 cm-1, 0.15683 nm, 12535.11 cm-1, respectively. For the A2H state, the present values of De, Be,αe, ωeχe, Re and We are 4.586 eV, 0.703333 cm-1, 0.005458 cm-1, 6.03398 cm-1, 0.16613 nm, 1057.89 cm-1, respectively. For the B2E+ state, the present values of De, Be, αe, ωeχe, Re and We are 3.506 eV, 0.677561 cm-1, 0.00603298 cm-1, 5.68809 cm-1, 0.1696 nm, 822.554 cm-1, respectively. For these states, the vibrational states with the rotational quantum number J equals zero (J = 0) are studied by solving the radial nuclear Schr6dinger equation using the Numerov method. For each vibrational state, the vibrational level, the classical turning points, the rotational inertial and the centrifugal distortion constants are calculated. Comparison is made with recent theoretical and experimental results.展开更多
The potential energy curves(PECs) of the first electronic excited state of S2(a^1△g) are calculated employing a multi-reference configuration interaction method with the Davidson correction in combination with a ...The potential energy curves(PECs) of the first electronic excited state of S2(a^1△g) are calculated employing a multi-reference configuration interaction method with the Davidson correction in combination with a series of correlationconsistent basis sets from Dunning: aug-cc-p VX Z(X = T, Q, 5, 6). In order to obtain PECs with high accuracy, PECs calculated with aug-cc-p V(Q, 5)Z basis sets are extrapolated to the complete basis set limit. The resulting PECs are then fitted to the analytical potential energy function(APEF) using the extended Hartree–Fock approximate correlation energy method. By utilizing the fitted APEF, accurate and reliable spectroscopic parameters are obtained, which are consistent with both experimental and theoretical results. By solving the Schr o¨dinger equation numerically with the APEFs obtained at the AV6 Z and the extrapolated AV(Q, 5)Z level of theory, we calculate the complete set of vibrational levels, classical turning points, inertial rotation and centrifugal distortion constants.展开更多
Simple analytical expressions for one- and two-body matrix elements in the unitary group approach to the configuration interaction problems of many-electron systems are obtained based on the previous results for gener...Simple analytical expressions for one- and two-body matrix elements in the unitary group approach to the configuration interaction problems of many-electron systems are obtained based on the previous results for general irreps.展开更多
A globally accurate potential energy surface is reported for the electronic ground-state H2O+. The ab initio energies utilized to map the potential energy surface are calculated at the multireference configuration in...A globally accurate potential energy surface is reported for the electronic ground-state H2O+. The ab initio energies utilized to map the potential energy surface are calculated at the multireference configuration interaction method employing the aug-cc-pVQZ basis set and the full valence complete active space wave function as reference. In order to improve accu- racy of the resulting raw ab initio energies, they are then extrapolated to the complete basis set limit and most importantly to the full configuration-interaction limit by semiempirically correcting the dynamical correlation using the double many- body expansion-scaled external correlation method. The topographical features of the current potential energy surface were examined in detail, which agree nicely with those of other theoretical work.展开更多
We determine the static values of the scalar and tensor dipole polarizabilities of the ground, 6s6p^3P0~o, and 6s6p^3P1~o states of the Yb atom. These results can be useful in many experiments undertaken using this at...We determine the static values of the scalar and tensor dipole polarizabilities of the ground, 6s6p^3P0~o, and 6s6p^3P1~o states of the Yb atom. These results can be useful in many experiments undertaken using this atom. We employed a combined configuration interaction(CI) method and a second-order many-body perturbation theory(MBPT) to evaluate energies and electric dipole(E1) matrix elements of many low-lying excited states of the above atom. These values are compared with the other available theoretical calculations and experimental values. By combining these E1 matrix elements with the experimental excitation energies, we estimate the dominant valence correlation contributions to the dipole polarizabilities of the above states. The core contribution is obtained from the finite field approach. We also compare these values with the other theoretical results as there are no precise experimental values that are available for these properties.展开更多
The potential energy curves (PECs) of X2∑ and A2П states of the CN molecule have been calculated with the multi- reference configuration interaction method and the aug-cc-pwCVSZ basis set. Based on the PECs, all o...The potential energy curves (PECs) of X2∑ and A2П states of the CN molecule have been calculated with the multi- reference configuration interaction method and the aug-cc-pwCVSZ basis set. Based on the PECs, all of the vibrational and rotational levels of the 13C14N molecule are obtained by solving the Schrrdinger equation of the molecular nuclear motion. The spectroscopic parameters are determined by fitting the Dunham coefficients with the levels. Both the levels and the spectroscopic parameters are in good qualitative agreement with the experimental data available. The analytical potential energy functions are also deduced from the calculated PECs. The present results can provide a helpful reference for future spectroscopy experiments or dynamical calculations of the molecule.展开更多
The special mass shift coefficient and field parameter factor of four multiples,3s^4P→3p4P°,3s^4P→3p^4D°,3s^2D→5p^2D°,and 3s^2P→3p^2P°,of ^14N and ^15N were studied using the multi-configuratio...The special mass shift coefficient and field parameter factor of four multiples,3s^4P→3p4P°,3s^4P→3p^4D°,3s^2D→5p^2D°,and 3s^2P→3p^2P°,of ^14N and ^15N were studied using the multi-configuration Dirac-Hartree-Fock method and the relativistic configuration interaction approach.The normal mass shifts,special mass shifts,field shifts,and isotope shifts of N(I)were derived from the theoretical calculated normal mass shift parameter,special mass shift parameter and field parameter factor,and compared with the reported experimental measurements and theoretical results.展开更多
New global three dimensional potential energy surfaces for the Cl+H2 reactive system have been constructed using accurate multireference configuration interaction calculations with a large basis set. The three lowest...New global three dimensional potential energy surfaces for the Cl+H2 reactive system have been constructed using accurate multireference configuration interaction calculations with a large basis set. The three lowest adiabatic potential energy surfaces correlating asymptotically with Cl(^2p)+H2 have been transformed to adiabatic representation, which leads to a fourth coupling potential for non-linear geometries. In addition, the spin-orbit coupling surfaces have also been computed using the Breit-Pauli Hamiltonian. Properties of the new potential are described. Reaction dynamics based on the new potential agrees with the recent experimental results quite well.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 10347126). Acknowledgements Xiong Zhuang acknowledges the Greek State Scholarship Foundation (I.K.Y.) and the National Hellenic Research Foundation Scholarship that partially supported this work.
文摘An analytic configuration interaction method based on variationally optimized internally orthogonalized modified Laguerre orbitals is presented. We have developed the corresponding computer code. For application, we study the 1s2s ^1S isoelectronic sequence from helium to neon, and compare with other methods. By taking into account the Eekart upper-bound theorem, we obtained more accurate and more intuitively understandable results than Hartree-Fock and multi-configuration Hartree-Fock reported results.
基金Project supported by the national Natural Science Foundation of China (Grant No 10674114).
文摘The potential energy curves (PECs) of the ground state (^3∏) and three low-lying excited states (^1∑, ^3∑,^1∏) of CdSe dimer have been studied by employing quasirelativistic effective core potentials on the basis of the complete active space self-consistent field method followed by multireference configuration interaction calculation. The four PECs are fitted to analytical potential energy functions using the Murrel-Sorbie potential function. Based on the PECs, the vibrational levels of the four states are determined by solving the Schrodinger equation of nuclear motion, and corresponding spectroscopic constants are accurately calculated. The equilibrium positions as well as the spectroscopic constants and the vibrational levels are reported. By our analysis, the ^3∏ state, of which the dissociation asymptote is Cd(^1S) + Se(^3p), is identified as a ground state of CdSe dimer, and the corresponding dissociation energy is estimated to be 0.39eV. However, the first excited state is only 1132.49cm^-1 above the ground state and the ^3∑ state is the highest in the four calculated states.
文摘With contributions from Breit interaction, quantum electrodynarnics (QED) corrections and nuclear mass corrections to the initial and final levels are taken into account. The transition energies, transition probabilities, and absorption oscillator strengths of Kα x-ray from Mn XVII to Mn XXIV have been calculated by using relativistic configuration interaction (RCI) and multi-configuration Dirac Fock (MCDF) method in the active interaction approach. Compared with the only available experimental transition data on He-like and Li-like manganese, the present results are in good agreement with them, and the rest of transition data of the present results are new ones. These wide range data can provide useful parameters for the study of the manganese plasma.
基金Supported by the 2014 Postdoctoral Sustentation Fund of Qingdao under Grant No 01020120517the Natural Science Foundation of Shandong Province under Grant No ZR2014AP001+1 种基金the National Natural Science Foundation of China under Grant No11447226the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents under Grant No 2015RCJJ015
文摘We investigate the geometries and energies of seven electronic states X-1A1, A1B1, a-3B1, B-1A2,b-3A2, C1B2 and c-3B2 of CF2 carbene using internally contracted multireference configuration interaction methods including Davidson correction (icMRCIq-Q) with different basis sets aug-cc-pVXZ (X=T, Q, 5). For the first time, the potential energy curves of electronic states of CF2 related icMRCI+Q/aug-cc-pVTZ level. The ab initio results will and dynamics of electronic states of CF2 radical. to the lowest dissociation limit are calculated at the further increase our understanding of the structures
文摘Fatigue dislocation configurations of Zircaloy-4 at 470℃×1h stress-relieved condition and 620℃×1h recrystallized condition were analyzed using TEM. Theresults show that: {1 0 1 0} prismatic slip is the primary deformation mode at RT. Prismatic and pyramidal slips are activated simultaneously at 400℃. The typicalsubstructure is the elongated dislocation lines at RT; whereas at 400℃, it is rectangularcells in stress-relieved specimens, and elongated cells plus dipole perpendicular cellboundary in recrystallized specimens. The relationship map among dislocation configuration, test temperature and cyclic strain range is established, finally.
基金supported by the National Natural Science Foundation of China(No.21473008 and No.21873011)
文摘Iterative multireference configuration interaction (IMRCI) is proposed. It is exploited to compute the electronic energies of H2O and CH2(singlet and triplet states) at equilibrium and non-equilibrium geometries. The potential energy curves of H2O, CH2(singlet and triplet states) and N2 have also been calculated with IMRCI as well as the M?ller Plesset perturbation theory (MP2, MP3, and MP4), the coupled cluster method with single and double substitutions (CCSD), and CCSD with perturbative triples correction (CCSD(T)).These calculations demonstrate that IMRCI results are independent of the initial guess of configuration functions in the reference space and converge quickly to the results of the full configuration interaction. The IMRCI errors relative to the full configuration interaction results are at the order of magnitude of 10-5 hartree within just 2-4 iterations. Further,IMRCI provides an efficient way to find on the potential energy surface the leading electron configurations which, as correct reference states, will be very helpful for the single-reference and multireference theoretical models to obtain accurate results.
基金Supported by the National Natural Science Foundation of China under Grant No 11447148
文摘We give a detailed examination of potential energy curves of the singlet and triplet states of CFC1 correlated with the lowest three dissociation limits. The calculations are carried out at the internally contracted multi- reference configuration interaction/cc-pV(T+d)Z level with the other two geometric parameters fixed at the state equilibrium conformation. The vertical transition energy, the oscillator strength, the main configuration and the electron transition are also investigated at the same level.
基金Project supported by the National Magnetic Confinement Fusion Science Program of China (Grant No. 2010GB104003)the Fundamental Research Funds for the Central Universities,China (Grant No. 450060481375)
文摘The potential energy curves for neutrals and multiply charged ions of carbon monosulfide are computed with highly correlated multi-reference configuration interaction wavefunctions.The correlations of inner-shell electrons with the scalar relativistic effects are included in the present computations.The spectroscopic constants,dissociation energies,ionization energies for ground and low-lying excited states together with corresponding electronic configurations of ions are obtained,and a good agreement between the present work and existing experiments is found.No theoretical evidence is found for the adiabatically stable CSq+(q〉2) ions according to the present ab initio calculations.The calculated values for 1st-6th ionization energies are 11.25,32.66,64.82,106.25,159.75,and 224.64 eV,respectively.The kinetic energy release data of fragments are provided by the present work for further experimental comparisons.
基金Supported by the Natural Science Foundation for Colleges and Universities of Jiangsu Province under Grant No 16KJB140008the National Natural Science Foundation of China under Grant Nos 11447204 and 11647164+1 种基金the Natural Science Foundation of Jiangsu Province under Grant No BK20151079the Scientific Research Foundation of Nanjing Xiaozhuang University under Grant No 2015NXY34
文摘To validate the ability of full configuration interaction quantum Monte Carlo (FCIQMC) for studying the 2D Hubbard model near half-filling regime, the ground state energies of a 4×44×4 square lattice system with various interaction strengths are calculated. It is found that the calculated results are in good agreement with those obtained by exact diagonalization (i.e., the exact values for a given basis set) when the population of psi particles (psips) is higher than the critical population required to correctly sample the ground state wave function. In addition, the variations of the average computational time per 20 Monte Carlo cycles with the coupling strength and the number of processors are also analyzed. The calculated results show that the computational efficiency of an FCIQMC calculation is mainly affected by the total population of psips and the communication between processors. These results can provide useful references for understanding the FCIQMC algorithm, studying the ground state properties of the 2D Hubbard model for the larger system size by the FCIQMC method and using a computational budget as effectively as possible.
基金Project supported by the Natural Science Foundation of Heilongjiang Province,China(Grant No.LH2022A026)the National Key Research and Development Program of China(Grant No.2022YFA1602500)+2 种基金the National Natural Science Foundation of China(Grant No.11934004)Fundamental Research Funds in Heilongjiang Province Universities,China(Grant No.145109309)Foundation of National Key Laboratory of Computational Physics(Grant No.6142A05QN22006)。
文摘The SiS molecule,which plays a significant role in space,has attracted a great deal of attention for many years.Due to complex interactions among its low-lying electronic states,precise information regarding the molecular structure of SiS is limited.To obtain accurate information about the structure of its excited states,the high-precision multireference configuration interaction(MRCI)method has been utilized.This method is used to calculate the potential energy curves(PECs)of the 18Λ–S states corresponding to the lowest dissociation limit of SiS.The core–valence correlation effect,Davidson’s correction and the scalar relativistic effect are also included to guarantee the precision of the MRCI calculation.Based on the calculated PECs,the spectroscopic constants of quasi-bound and bound electronic states are calculated and they are in accordance with previous experimental results.The transition dipole moments(TDMs)and dipole moments(DMs)are determined by the MRCI method.In addition,the abrupt variations of the DMs for the 1^(5)Σ^(+)and 2^(5)Σ^(+)states at the avoided crossing point are attributed to the variation of the electronic configuration.The opacity of SiS at a pressure of 100 atms is presented across a series of temperatures.With increasing temperature,the expanding population of excited states blurs the band boundaries.
基金This work was supported by the National Natural Science Foundation of China (No.20328304 and 20533060).
文摘A global three dimensional potential energy surface for the F+H2→HF+H reaction has been developed by spline interpolation of about 15,000 symmetry-unique ab initio points, obtained from the multi-reference configuration interaction level with Davidson correction using the aug-cc-pV5Z basis set. In the entrance channel the spin-orbit coupling energy is also included.
基金supported by the Leshan Teachers College under Grant No.206113
文摘Relativistic configuration interaction calculations for the states of 1s^22s^2, 1s^22s3l (l = s,p,d) and 1s^22p31 (l=s,p,d) configurations of iron are carried out using relativistic configuration interaction (RCI) and multi-configuration Dirac-Fock (MCDF) method in the active interaction approach. In the present calculation, a large-scale configuration expansion was used in describing the target states. These results are extensively compared with other available calculative and experimental and observed values, the corresponding present results are in good agreement with experimental and observed values, and some differences are found with other available calculative values. Because more relativistic effects are considered than before, the present results should be more accurate and reliable.
基金supported by the National Natural Science Foundation of China (Grant No. 10874064)the Program for Science & Technology Innovation Talents in Universities of Henan Province in China (Grant No. 2008HASTIT008)
文摘This paper calculates the equilibrium internuclear separations, the harmonic frequencies and the potential energy curves of the X^2∑+, A^2П and B^2∑+ states of the CP radical by the highly accurate valence internally contracted multireference configuration interaction method with correlation-consistent basis sets (aug-cc-pV6Z for C atom and aug-cc-pVQZ for P atom). The potential energy curves are all fitted with the analytic potential energy function by the least-square fitting. Employing the analytic potential energy function, we determine the spectroscopic constants (Be, αe and ωeχe) of these states. For the X2∑+ state, the obtained values of De, Be, αe, ωeχe, Re and ωe are 5.4831 eV, 0.792119 cm-1, 0.005521 cm-1, 6.89653 cm-1, 0.15683 nm, 12535.11 cm-1, respectively. For the A2H state, the present values of De, Be,αe, ωeχe, Re and We are 4.586 eV, 0.703333 cm-1, 0.005458 cm-1, 6.03398 cm-1, 0.16613 nm, 1057.89 cm-1, respectively. For the B2E+ state, the present values of De, Be, αe, ωeχe, Re and We are 3.506 eV, 0.677561 cm-1, 0.00603298 cm-1, 5.68809 cm-1, 0.1696 nm, 822.554 cm-1, respectively. For these states, the vibrational states with the rotational quantum number J equals zero (J = 0) are studied by solving the radial nuclear Schr6dinger equation using the Numerov method. For each vibrational state, the vibrational level, the classical turning points, the rotational inertial and the centrifugal distortion constants are calculated. Comparison is made with recent theoretical and experimental results.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11304185 and 11074151)
文摘The potential energy curves(PECs) of the first electronic excited state of S2(a^1△g) are calculated employing a multi-reference configuration interaction method with the Davidson correction in combination with a series of correlationconsistent basis sets from Dunning: aug-cc-p VX Z(X = T, Q, 5, 6). In order to obtain PECs with high accuracy, PECs calculated with aug-cc-p V(Q, 5)Z basis sets are extrapolated to the complete basis set limit. The resulting PECs are then fitted to the analytical potential energy function(APEF) using the extended Hartree–Fock approximate correlation energy method. By utilizing the fitted APEF, accurate and reliable spectroscopic parameters are obtained, which are consistent with both experimental and theoretical results. By solving the Schr o¨dinger equation numerically with the APEFs obtained at the AV6 Z and the extrapolated AV(Q, 5)Z level of theory, we calculate the complete set of vibrational levels, classical turning points, inertial rotation and centrifugal distortion constants.
文摘Simple analytical expressions for one- and two-body matrix elements in the unitary group approach to the configuration interaction problems of many-electron systems are obtained based on the previous results for general irreps.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11304185 and 11074151)China Postdoctoral Science Foundation(Grant No.2014M561957)+1 种基金the Postdoctoral Innovation Project of Shandong Province,China(Grant No.201402013)the Shandong Provincial Natural Science Foundation,China(Grant No.ZR2014AM022)
文摘A globally accurate potential energy surface is reported for the electronic ground-state H2O+. The ab initio energies utilized to map the potential energy surface are calculated at the multireference configuration interaction method employing the aug-cc-pVQZ basis set and the full valence complete active space wave function as reference. In order to improve accu- racy of the resulting raw ab initio energies, they are then extrapolated to the complete basis set limit and most importantly to the full configuration-interaction limit by semiempirically correcting the dynamical correlation using the double many- body expansion-scaled external correlation method. The topographical features of the current potential energy surface were examined in detail, which agree nicely with those of other theoretical work.
基金supported by the National Natural Science Foundation of China(Grant Nos.91536106 and U1332206)the Strategic Priority Research Program(Category B)of the Chinese Academy of Sciences(Grant No.21030300)the National Key Research and Development Program of China(Grant No.2016YFA0302104)
文摘We determine the static values of the scalar and tensor dipole polarizabilities of the ground, 6s6p^3P0~o, and 6s6p^3P1~o states of the Yb atom. These results can be useful in many experiments undertaken using this atom. We employed a combined configuration interaction(CI) method and a second-order many-body perturbation theory(MBPT) to evaluate energies and electric dipole(E1) matrix elements of many low-lying excited states of the above atom. These values are compared with the other available theoretical calculations and experimental values. By combining these E1 matrix elements with the experimental excitation energies, we estimate the dominant valence correlation contributions to the dipole polarizabilities of the above states. The core contribution is obtained from the finite field approach. We also compare these values with the other theoretical results as there are no precise experimental values that are available for these properties.
基金supported by the National Natural Science Foundation of China(Grant Nos.11174117 and 11374132)the Program for Scientific Research Innovation Team in Colleges and Universities of Shandong Province,China
文摘The potential energy curves (PECs) of X2∑ and A2П states of the CN molecule have been calculated with the multi- reference configuration interaction method and the aug-cc-pwCVSZ basis set. Based on the PECs, all of the vibrational and rotational levels of the 13C14N molecule are obtained by solving the Schrrdinger equation of the molecular nuclear motion. The spectroscopic parameters are determined by fitting the Dunham coefficients with the levels. Both the levels and the spectroscopic parameters are in good qualitative agreement with the experimental data available. The analytical potential energy functions are also deduced from the calculated PECs. The present results can provide a helpful reference for future spectroscopy experiments or dynamical calculations of the molecule.
基金supported by the National Natural Science Foundation of China(No.11674096,No.11874151,and No.11834003)Shanghai Pujiang Talents Plan(No.18PJ1403100).
文摘The special mass shift coefficient and field parameter factor of four multiples,3s^4P→3p4P°,3s^4P→3p^4D°,3s^2D→5p^2D°,and 3s^2P→3p^2P°,of ^14N and ^15N were studied using the multi-configuration Dirac-Hartree-Fock method and the relativistic configuration interaction approach.The normal mass shifts,special mass shifts,field shifts,and isotope shifts of N(I)were derived from the theoretical calculated normal mass shift parameter,special mass shift parameter and field parameter factor,and compared with the reported experimental measurements and theoretical results.
基金V. ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.20725312 and No.20533060) and the Ministry of Science and Technology (No.2007CB815201).
文摘New global three dimensional potential energy surfaces for the Cl+H2 reactive system have been constructed using accurate multireference configuration interaction calculations with a large basis set. The three lowest adiabatic potential energy surfaces correlating asymptotically with Cl(^2p)+H2 have been transformed to adiabatic representation, which leads to a fourth coupling potential for non-linear geometries. In addition, the spin-orbit coupling surfaces have also been computed using the Breit-Pauli Hamiltonian. Properties of the new potential are described. Reaction dynamics based on the new potential agrees with the recent experimental results quite well.