Liquid metal(LM)has become an emerging material paradigm in the electromagnetic interference shielding field owing to its excellent electrical conductivity.However,the processing of lightweight bulk LM composites with...Liquid metal(LM)has become an emerging material paradigm in the electromagnetic interference shielding field owing to its excellent electrical conductivity.However,the processing of lightweight bulk LM composites with finite package without leakage is still a great challenge,due to high surface tension and pump-out issues of LM.Here,a novel confined thermal expansion strategy based on expandable microsphere(EM)is proposed to develop a new class of LM-based monoliths with 3D continuous conductive network.The EM/LM monolith(EM/LMm)presents outstanding performance of lightweight like metallic aerogel(0.104 g cm^(-1)),high strength(3.43 MPa),super elasticity(90%strain),as well as excellent tailor ability and recyclability,rely on its unique gas-filled closed-cellular structure and refined LM network.Moreover,the assembled highly conducting EM/LMm exhibits a recorded shielding effectiveness(98.7 dB)over a broad frequency range of 8.2-40 GHz among reported LM-based composites at an ultra-low content of LM,and demonstrates excellent electromagnetic sealing capacity in practical electronics.The ternary EM/LM/Ni monoliths fabricated by the same approach could be promising universal design principles for multifunctional LM composites,and applicable in magnetic responsive actuator.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(62074154)China Postdoctoral Science Foundation(Grant No.2020M682983)+2 种基金Guangdong Basic and Applied Basic Research Fund(2020A1515110962,2020A1515110154)Shenzhen Basic Research Plan(JCYJ20180507182530279)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(2017411).
文摘Liquid metal(LM)has become an emerging material paradigm in the electromagnetic interference shielding field owing to its excellent electrical conductivity.However,the processing of lightweight bulk LM composites with finite package without leakage is still a great challenge,due to high surface tension and pump-out issues of LM.Here,a novel confined thermal expansion strategy based on expandable microsphere(EM)is proposed to develop a new class of LM-based monoliths with 3D continuous conductive network.The EM/LM monolith(EM/LMm)presents outstanding performance of lightweight like metallic aerogel(0.104 g cm^(-1)),high strength(3.43 MPa),super elasticity(90%strain),as well as excellent tailor ability and recyclability,rely on its unique gas-filled closed-cellular structure and refined LM network.Moreover,the assembled highly conducting EM/LMm exhibits a recorded shielding effectiveness(98.7 dB)over a broad frequency range of 8.2-40 GHz among reported LM-based composites at an ultra-low content of LM,and demonstrates excellent electromagnetic sealing capacity in practical electronics.The ternary EM/LM/Ni monoliths fabricated by the same approach could be promising universal design principles for multifunctional LM composites,and applicable in magnetic responsive actuator.