Using the method of separation of variables in the elliptical coordinate system, a recursive formula for the electromagnetic fields in a confocal elliptical waveguide filled with multi-layered homogeneous isotropic me...Using the method of separation of variables in the elliptical coordinate system, a recursive formula for the electromagnetic fields in a confocal elliptical waveguide filled with multi-layered homogeneous isotropic media is derived; then the eigenequation for it is given. When an elliptical waveguide becomes a circular waveguide, the electromagnetic fields and the eigenequation of the circular waveguide can be obtained from the eigenequation of the elliptical waveguide using the asymptotic formulae of Mathieu and modified Mathieu functions for a large radial coordinate in the elliptical coordinate system, and the eigenequation of a circular waveguide filled with multilayered dielectrics can be treated as a special case of an elliptical waveguide. In addition, some numerical examples are presented to analyze the propagating characteristics influenced by the permittivity, permeability of dielectrics filled in the elliptical waveguide, etc. The results show that changing the permittivity or permeability of the dielectrics filled in the waveguide and the major semiaxis value of the i-th layer can change the propagating characteristics of an elliptical waveguide.展开更多
文摘Using the method of separation of variables in the elliptical coordinate system, a recursive formula for the electromagnetic fields in a confocal elliptical waveguide filled with multi-layered homogeneous isotropic media is derived; then the eigenequation for it is given. When an elliptical waveguide becomes a circular waveguide, the electromagnetic fields and the eigenequation of the circular waveguide can be obtained from the eigenequation of the elliptical waveguide using the asymptotic formulae of Mathieu and modified Mathieu functions for a large radial coordinate in the elliptical coordinate system, and the eigenequation of a circular waveguide filled with multilayered dielectrics can be treated as a special case of an elliptical waveguide. In addition, some numerical examples are presented to analyze the propagating characteristics influenced by the permittivity, permeability of dielectrics filled in the elliptical waveguide, etc. The results show that changing the permittivity or permeability of the dielectrics filled in the waveguide and the major semiaxis value of the i-th layer can change the propagating characteristics of an elliptical waveguide.