The conformational entropy S and free energy F were calculated by exact enumeration of polysilane chain up to 23 segments with excluded volume (EV) and long-range van der Waals (VW) interaction. A nonlinear relation b...The conformational entropy S and free energy F were calculated by exact enumeration of polysilane chain up to 23 segments with excluded volume (EV) and long-range van der Waals (VW) interaction. A nonlinear relation between SEV+VW and chain length n was found though S-EV was found to vary linearly with n. We found that the second-order transition temperature of polysilane chain with VW interaction increases with the increase of chain length, while that of polysilane chain without VW interaction is chain length independent. Moreover, the free energies FEV+VW and F-EV are both linearly related with n, and FEV+VW < F-EV for all temperatures.展开更多
INTRODUCTION The conformational state transition of polymer chains relates to crystallization processes, migration ofthe chains in solution, fluctuation of the end-to-end distance of random coils, and the relaxation a...INTRODUCTION The conformational state transition of polymer chains relates to crystallization processes, migration ofthe chains in solution, fluctuation of the end-to-end distance of random coils, and the relaxation and phasetransitions of polymers. A description of the conformational state transition requires questions about; 1) howmany stable conformational states for a specific σ bond; 2) the barriers between the states; 3) the mechanismof the conformational transition; 4) any cooperative behavior during the transition. Flory and his coworkers展开更多
A full-relaxation optimization of molecule and the Dreiding force field are employed to obtain the geometry parameters and the conformational energy surfaces of meso or racemic dyad of poly(acrylic acid) (PAA) and pol...A full-relaxation optimization of molecule and the Dreiding force field are employed to obtain the geometry parameters and the conformational energy surfaces of meso or racemic dyad of poly(acrylic acid) (PAA) and poly(methacrylic acid) (PMAA). Three different carbonyl-bond orientations of side-groups resulted in the differences in depth of potential wells in their energetic contours for a meso or a racemic dyad. These discrepancies are interpreted as a result of various fine structures corresponding to grid search conformations as well as thereby different interactions. The analysis on the most stable conformations of PMAA confirmed that the ester groups are nearly perpendicular to the plane defined by the two adjacent skeletal bonds but may possibly change their relative orientations to meet the requirement of lower energy during the conformational state transition. For each polymer, two global energy maps of a meso and a racemic dyad were finally constructed from the superposition of energy data for the three kinds of side-group orientations by the Boltzmann factors. From an ensemble average, the proposed scheme with three rotational isomeric states (RIS) allowed us to access the experimentally unperturbed dimensions of PAA chain via the configurational statistical mechanics. Although the calculation was based on the short-range, local interactions, it was interested to note that the experimental characteristic ratios just fell within the range calculated for atactic chains.展开更多
Anthranilic diamides are fasting growing class insecticides in modern crop protection for their high activity, low ecotoxicity, and broad insecticidal spectra. However. the bioactive conformations of anthranilic diami...Anthranilic diamides are fasting growing class insecticides in modern crop protection for their high activity, low ecotoxicity, and broad insecticidal spectra. However. the bioactive conformations of anthranilic diamides are still unclear until now. In the present study, DFT-based potential energy surface scanning was used to detect the low energy conformations of chlorantraniliprole, then were used respectively in the structure alignment for a series of anthranilic diamide compounds followed by detailed CoMFA and CoMSIA analyses. Finally, the bioactive conformations of anthranilic diamide insecticides were revealed from a series of low energy conformations, which might provide some clues for future insecticide design.展开更多
A full-relaxation optimization of molecule and the popular MM2 force field are employed to obtain the geometry parameters and the conformational energy surface of a meso or a racemic dyad of poly(methyl acrylate) (PMA...A full-relaxation optimization of molecule and the popular MM2 force field are employed to obtain the geometry parameters and the conformational energy surface of a meso or a racemic dyad of poly(methyl acrylate) (PMA) with a specified carbonyl-bond orientation in side-groups. It is found that the conformational energy maps calculated here considerably differ from those calculated with the rigid molecular model as reported in the earlier studies. The g(-) state cannot be omitted in the obtained contour maps. Two important conformers tg(-) and g(-t) with energy minima were newly detected for a racemic dyad. The analysis on the conformations with energy minima confirmed that the ester groups are not always perpendicular to the plane defined by the two adjacent skeletal bonds and may change their relative orientations to meet the requirement of lower energies during the conformational state transition. Instead of the early way of adjusting the interaction energy parameters to fit the experimental data, we attempt to predict unperturbed chain dimensions via the reliable force field and the configurational statistical mechanics. The proposed scheme with three rotational states identified from the contour maps allowed us to satisfactorily reproduce the experimental dimensions of random PMA chains.展开更多
ABC transporters form the largest of all transporter families, and their structural study has made tremen- dous progress over recent years. However, despite such advances, the precise mechanisms that determine the ene...ABC transporters form the largest of all transporter families, and their structural study has made tremen- dous progress over recent years. However, despite such advances, the precise mechanisms that determine the energy-coupling between ATP hydrolysis and the con- formational changes following substrate binding remain to be elucidated. Here, we present our thermodynamic analysis for both ABC importers and exporters, and introduce the two new concepts of differential-binding energy and elastic conformational energy into the dis- cussion. We hope that the structural analysis of ABC transporters will henceforth take thermodynamic aspects of transport mechanisms into account as well.展开更多
文摘The conformational entropy S and free energy F were calculated by exact enumeration of polysilane chain up to 23 segments with excluded volume (EV) and long-range van der Waals (VW) interaction. A nonlinear relation between SEV+VW and chain length n was found though S-EV was found to vary linearly with n. We found that the second-order transition temperature of polysilane chain with VW interaction increases with the increase of chain length, while that of polysilane chain without VW interaction is chain length independent. Moreover, the free energies FEV+VW and F-EV are both linearly related with n, and FEV+VW < F-EV for all temperatures.
文摘INTRODUCTION The conformational state transition of polymer chains relates to crystallization processes, migration ofthe chains in solution, fluctuation of the end-to-end distance of random coils, and the relaxation and phasetransitions of polymers. A description of the conformational state transition requires questions about; 1) howmany stable conformational states for a specific σ bond; 2) the barriers between the states; 3) the mechanismof the conformational transition; 4) any cooperative behavior during the transition. Flory and his coworkers
基金This work was supported by the Youth Science Foundation of Acedemia Sinica the China Postdoctoral Science Foundation, the National Natural Science Foundation of China, and Polymer Physics Laboratory,Academia Sinica
文摘A full-relaxation optimization of molecule and the Dreiding force field are employed to obtain the geometry parameters and the conformational energy surfaces of meso or racemic dyad of poly(acrylic acid) (PAA) and poly(methacrylic acid) (PMAA). Three different carbonyl-bond orientations of side-groups resulted in the differences in depth of potential wells in their energetic contours for a meso or a racemic dyad. These discrepancies are interpreted as a result of various fine structures corresponding to grid search conformations as well as thereby different interactions. The analysis on the most stable conformations of PMAA confirmed that the ester groups are nearly perpendicular to the plane defined by the two adjacent skeletal bonds but may possibly change their relative orientations to meet the requirement of lower energy during the conformational state transition. For each polymer, two global energy maps of a meso and a racemic dyad were finally constructed from the superposition of energy data for the three kinds of side-group orientations by the Boltzmann factors. From an ensemble average, the proposed scheme with three rotational isomeric states (RIS) allowed us to access the experimentally unperturbed dimensions of PAA chain via the configurational statistical mechanics. Although the calculation was based on the short-range, local interactions, it was interested to note that the experimental characteristic ratios just fell within the range calculated for atactic chains.
基金the financial support from the National Key Technology R&D Program of China (No.2011BAE06B05)
文摘Anthranilic diamides are fasting growing class insecticides in modern crop protection for their high activity, low ecotoxicity, and broad insecticidal spectra. However. the bioactive conformations of anthranilic diamides are still unclear until now. In the present study, DFT-based potential energy surface scanning was used to detect the low energy conformations of chlorantraniliprole, then were used respectively in the structure alignment for a series of anthranilic diamide compounds followed by detailed CoMFA and CoMSIA analyses. Finally, the bioactive conformations of anthranilic diamide insecticides were revealed from a series of low energy conformations, which might provide some clues for future insecticide design.
基金This work has been supported by the National Science Foundation of China,the Youth Science Foundation of Academia Sinica,the China Postdoctoral Science Foundation and Polymer Physics Laboratory, Academia Sinica.
文摘A full-relaxation optimization of molecule and the popular MM2 force field are employed to obtain the geometry parameters and the conformational energy surface of a meso or a racemic dyad of poly(methyl acrylate) (PMA) with a specified carbonyl-bond orientation in side-groups. It is found that the conformational energy maps calculated here considerably differ from those calculated with the rigid molecular model as reported in the earlier studies. The g(-) state cannot be omitted in the obtained contour maps. Two important conformers tg(-) and g(-t) with energy minima were newly detected for a racemic dyad. The analysis on the conformations with energy minima confirmed that the ester groups are not always perpendicular to the plane defined by the two adjacent skeletal bonds and may change their relative orientations to meet the requirement of lower energies during the conformational state transition. Instead of the early way of adjusting the interaction energy parameters to fit the experimental data, we attempt to predict unperturbed chain dimensions via the reliable force field and the configurational statistical mechanics. The proposed scheme with three rotational states identified from the contour maps allowed us to satisfactorily reproduce the experimental dimensions of random PMA chains.
文摘ABC transporters form the largest of all transporter families, and their structural study has made tremen- dous progress over recent years. However, despite such advances, the precise mechanisms that determine the energy-coupling between ATP hydrolysis and the con- formational changes following substrate binding remain to be elucidated. Here, we present our thermodynamic analysis for both ABC importers and exporters, and introduce the two new concepts of differential-binding energy and elastic conformational energy into the dis- cussion. We hope that the structural analysis of ABC transporters will henceforth take thermodynamic aspects of transport mechanisms into account as well.